
Concurrency Analysis for Asynchronous APIs

Anirudh Santhiar and Aditya Kanade

Department of Computer Science and Automation, IISc

Asynchronous Programming Model

• Waiting in line for your Idly
vs.

• Registering your order
• Doing other things
• Having the restaurant call you

Race Example

Deadlocks in Asynchronous Programs

Our Work

We analyze the concurrency behaviours of

1. Event driven asynchronous libraries with
programmatic event loops to detect
races (joint work with S. Kaleeswaran)

2. C# asynchronous programs to find
deadlocks

Software using this concurrency model
includes OS APIs, GUI frameworks, web

browsers and libraries for cloud computing

Dynamic Race Detection

Deadlocks in Asynchronous Programs

Races involving
programmatic event loops Race Detection: Technical Highlights and Results

Related Publications and Information

Efficient computation of
the happens-before
relation: 5X speedup over baseline

Our tool, SparseRacer found 13
new and harmful use-after-free
race conditions in 9 popular open-
source applications including
Okular, Kate and KOrganizer

• Anirudh Santhiar, Shalini Kaleeswaran and Aditya Kanade. Race Detection in the presence of
Programmatic Event Loops. Accepted, ISSTA '16

• Web page: http://www.iisc-seal.net/

However, asynchronous programs can
suffer from bugs such as race conditions
and deadlocks

Event Loop:
 while (! exit) {
 e = nextEvent ();
 process e;
 }

• An Event Loop is the basic
scheduling mechanism for programs
that respond to asynchronous
events

• We consider frameworks where
event loops can also be spun
programmatically by event handlers

• Prone to interference between
handler spinning event loop and
handler running inside the loop

Bug: Close the window when
an error dialog is shown.

• The FileOpen event’s handler spins a
programmatic event loop during the
time the error dialog is shown

• There is a race between FileHandler and
QuitHandler that runs in the
programmatic event loop

Goal: Reason about non-determinism
introduced by programmatic event loops
to detect such races.

• Find bugs using instrumented non-buggy
executions

• Design trace language to record
interesting operations

• Design happens-before rules to detect
possible reorderings of these

• Determine if there is a re-ordering of
event handlers so that conflicting
operations such as uses and frees can be
reordered to induce bugs

• Notify programmer about such re-
orderings along with debug information

• Powerful framework to handle races beyond

the state-of-the art

• Account for all general scheduling scenarios e.g.,
recursive and cascaded programmatic event
loops

• Novel sparse representation of happens-before
relation enabling faster race detection

Mixing synchronous and asynchronous waiting in
C#’s asynchronous programming model can lead to
deadlocks.

public static async Task<String> GetContentsAsync(Uri uri)

{

 using (var client = new HttpClient())

 {

 // asynchronous wait

 var contents = await client.GetStringAsync(uri);

 return Process(contents);

 }

}

public void Button1_Click(...)
{
 var t = GetContentsAsync(...);
 resultBox.Text = t.Result; // synchronous wait
}

• t.Result is a blocking call that prevents GetContentsAsync

from completing

• In turn, the only way to unblock t.Result is for
GetContentsAsync to complete

The deadlock is observed even though there is no explicit
thread creation or locking

• Design a static analysis to detect such deadlocks

• Static analysis captures C# semantics for scheduling
and async/await

• Preliminary results are encouraging – found
previously unknown deadlocks in 7 open source
applications

Images courtesy guardian.com and en.wikipedia.org

http://www.iisc-seal.net/
http://www.iisc-seal.net/
http://www.iisc-seal.net/
http://www.iisc-seal.net/

