Concurrency Analysis for Asynchronous APIs

Anirudh Santhiar and Aditya Kanade
Department of Computer Science and Automation, IISc

(d

Asynchronous Programming Model Race Example Deadlocks in Asynchronous Programs
o leType _size , Mixing synchronous and asynchronous waiting in
® Error - KTnef C#’s asynchronous programming model can lead to
w Unable to open file "/initrd.img". d ea d | OC kS .
No file loaded public static async Task<String> GetContentsAsync(Uri uri)
o o {
Waltlng n Ilne fOI" LS Idly Bug' Close the WIndOW When using (var client = new HttpClient())
vS. an error dialog is shown. { |
. . // asynchronous wait
° Reg|5ter|ng your Order var contents = await client.GetStringAsync(uri);
* Doing other things * The FileOpen event’s handler spins a) neturn Process(contents)s
* Having the restaurant call you programmatic event loop during the }

time the error dialog is shown

public void Buttonl Click(...)
{

* There s a race between FileHandler and var t = GetContentsAsync(...);
However’ asynchronous programs can QUitHandler that runs in the } resultBox.Text = t.Result; // synchronous wait
suffer from bugs such as race conditions programmatic event loop

* t.Result is a blocking call that prevents GetContentsAsync
from completing

and deadlocks
Goal: Reason about non-determinism

introduced by programmatic event loops * In turn, the only way to unblock t.Result is for
Images courtesy guardian.com and en.wikipedia.org to detect SUCh races. GetContentsAsync to complete
Our Work Dynamic Race Detection Deadlocks in Asynchronous Programs

We analyze the concurrency behaviours of
* Find bugs using instrumented non-buggy

executions [{I I,O
t.Result * E
1. Event driven asynchronous libraries with * Design trace language to record ! cesule = Procems(ontente): |
programmatic event loops to detect interesting operations I f
races (joint work with S. Kaleeswaran) K S !
* Design happens-before rules to detect UI event queue

possible reorderings of these
The deadlock is observed even though there is no explicit

2. C# asynchronous programs to find Determine if there is a re-ordering of thread creation or locking
deadlocks event handlers so that conflicting
operations such as uses and frees can be * Design a static analysis to detect such deadlocks

reordered to induce bugs
e Static analysis captures C# semantics for scheduling

* Notify programmer about such re- and async/await
i i orderings along with debug information
.SOftware using this concurrency model 5 5 5 * Preliminary results are encouraging — found
includes OS APIs, GUI frameworks, web previously unknown deadlocks in 7 open source
browsers and libraries for cloud computing applications

Races involving

programmatic event loops Race Detection: Technical Highlights and Results

Event Loop:
A
Wehl_lengx?E(\';[e)ni (); * Powerful framework to handle races beyond
pr;cess o ' the state-of-the art Efficient computation of
\ ’ the happens-before

relation: 5X speedup over baseline

* Account for all general scheduling scenarios e.g.,

* An Event Loop is the basic recursive and cascaded programmatic event

scheduling mechanism for programs loops Our tool, SparseRacer found 13
that respond to asynchronous new and harmful use-after-free
events race conditions in 9 popular open-

source applications including

e Novel sparse representation of happens-before
P P PP Okular, Kate and KOrganizer

 We consider frameworks where relation enabling faster race detection
event loops can also be spun

orogrammatically by event handlers Related Publications and Information

e Prone to interference between * Anirudh Santhiar, Shalini Kaleeswaran and Aditya Kanade. Race Detection in the presence of
Programmatic Event Loops. Accepted, ISSTA '16

nandler spinning event loop and -
* Web page: http://www.lisc-seal.net/

nandler running inside the loop

http://www.iisc-seal.net/
http://www.iisc-seal.net/
http://www.iisc-seal.net/
http://www.iisc-seal.net/

