Overview Nested Lattice Codes for Gaussian Channels

e Secure bidirectional relaying: coding schemes and achievable transmission rates.
e Codes for communication over Gaussian channels,
e Secret key generation: poly-time coding scheme and achievable key rates.
e Vector quantization, Sphere packing and covering,
e |attices from LDPC codes: properties.
e Codes for secure communication and secret key generation, Lattice-based cryptography,
e Concatenated lattice codes: capacity-achieving with poly-time encoding and decoding complexity.
e Many more

Drawback of general nested lattice codes: Closest lattice point decoding takes exponential time.

Information-Theoretic Security Goal: Design nested lattice codes with polynomial encoding-decoding complexity.
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An information-theoretic approach to security:
e Messages drawn at random; No assumptions on computational power of eavesdropper. | Eavesdropper

e Want eve's observations I to be independent of messages X;. (perfect secrecy), or

e T, has NV iid samples of a Gaussian source Xj.
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e Each terminal operates under a quantization rate constraint, and only the quantized random variables can
be used to generate secret keys.

e Objective: Generate secret key using correlated rvs and public communication.

Secure Bidirectional Relaymg e Reliability: All terminals must agree on same secret key K with high probability.

e Security: The key K must be “almost independent” of public communication.

o Key rate: %logg |key space].
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wants wants X Xay e Encoding and decoding complexities are polynomial in /V.

e Messages X,Y € G. e Characterize achievable secret key rates when joint distribution of sources is a Markov tree.

e Power constraint: %EHUHQ < P and %I[E‘I',HVH2 < P.
e Reliability: Probability of decoding error is small.
e Transmission rate: R = %logz G| Low-Density Construction-A (LDA) Lattices

e Perfect secrecy: w 1L X and w 1L Y.
e Lattices constructed from low-density parity-check (LDPC) codes.

e Proposed by di Pietro et al. (2012) [6].

e Strong secrecy: limy—so0 I(X; W) = limy 00 I(Y; W) = 0.

Main results: _ _ _
e Admit low-complexity message-passing decoders.

e Explicit coding scheme that achieves perfect secrecy: irrespective of noise distribution [1]. _ _ _
e We studied some structural properties of these lattices.

e Coding scheme for strong secrecy: irrespective of noise distribution [1].
© ° g P 1] e Specifically, we showed that they are good for packing and MSE quantization, and their duals are good for

e Results for unequal channel gains, i.e., w = hju + hov + z, when h1, ho unknown to users [2]. packing [4].

e Larger networks [I]. e Under closest lattice point decoding, nested LDA lattice codes achieve capacity of AWGN channel (di
Pietro et al. 2014) [7].

=== Perfect secrecy

_ ereaserr e They are also useful for communication over other Gaussian networks, vector quantization, and physical-
— No secrec .
= layer security [4].
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o " 50 T Concatenated lattice codes achieve the capacity of the AWGN channel. [5]
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e Concatenating with outer Reed-Solomon code:

Encoding and decoding complexity: O(N?) and Error probability: e UN),

e Concatenating with outer expander code:

Lattices and Lattice Codes Encoding complexity: O(N?), Decoding complexity: O(N log? N) and Error probability: e~ UN).

First constructions to have poly-time complexity and exponentially decaying probability of error.
V1,V2,...,Vp a basis for R". Then, A = {5} a;v; : a; € Z} is a lattice. Extensions to Gaussian wiretap channel, Physical-layer network coding and Secret key generation.

Lattice code: All lattice points within a shaping region §.

Nested lattices: (A, Ag), where Ag C A are lattices in R".
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