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Overview
• Secure bidirectional relaying: coding schemes and achievable transmission rates.

• Secret key generation: poly-time coding scheme and achievable key rates.

• Lattices from LDPC codes: properties.

• Concatenated lattice codes: capacity-achieving with poly-time encoding and decoding complexity.

Information-Theoretic Security

Wireless communication channels:

• Noisy → Reliability and Insecure → Security.

An information-theoretic approach to security:

• Messages drawn at random; No assumptions on computational power of eavesdropper.

• Want eve’s observations W to be independent of messages Xi. (perfect secrecy), or

I(W ; Xi) = ∑
w,xi

p(w, xi) log2
p(w, xi)

p(w)p(xi)
to be “small”. (strong secrecy)

Secure Bidirectional Relaying

Message Message

X Y

w = u + v + z

u v
A R B

u, v ∈ Rn

X ⊕ Y

A R Bw̃ w̃

w̃

Ŷ X̂

X ⊕ Y

• Messages X, Y ∈ G.

• Power constraint: 1
nE‖u‖

2 < P and 1
nE‖v‖

2 < P .

• Reliability: Probability of decoding error is small.

• Transmission rate: R = 1
n log2 |G|.

• Perfect secrecy: w ⊥⊥ X and w ⊥⊥ Y.

• Strong secrecy: limn→∞ I(X ; w) = limn→∞ I(Y ; w) = 0.

Main results:

• Explicit coding scheme that achieves perfect secrecy: irrespective of noise distribution [1].

• Coding scheme for strong secrecy: irrespective of noise distribution [1].

• Results for unequal channel gains, i.e., w = h1u + h2v + z, when h1, h2 unknown to users [2].

• Larger networks [1].
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Lattices and Lattice Codes

• v1, v2, . . . , vn a basis for Rn. Then, Λ = {∑n
i=1 aivi : ai ∈ Z} is a lattice.

• Lattice code: All lattice points within a shaping region S.

• Nested lattices: (Λ, Λ0), where Λ0 ⊂ Λ are lattices in Rn.

• Fundamental Voronoi region: set of points of Rn closest to the zero lattice point.

• Nested lattice code: Fundamental Voronoi region of Λ0 is the shaping region.
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Nested Lattice Codes for Gaussian Channels

• Codes for communication over Gaussian channels,

• Vector quantization, Sphere packing and covering,

• Codes for secure communication and secret key generation, Lattice-based cryptography,

• Many more

Drawback of general nested lattice codes: Closest lattice point decoding takes exponential time.

Goal: Design nested lattice codes with polynomial encoding-decoding complexity.

Secret Key Generation from Correlated Gaussian Sources

• Ti has N iid samples of a Gaussian source Xi.

• (X1(t), X2(t), . . . , Xm(t)) are correlated Gaussian rvs.

• Each terminal operates under a quantization rate constraint, and only the quantized random variables can
be used to generate secret keys.

• Objective: Generate secret key using correlated rvs and public communication.

• Reliability: All terminals must agree on same secret key K with high probability.

• Security: The key K must be “almost independent” of public communication.

• Key rate: 1
N log2 |key space|.

Main contributions:

• We give a coding scheme that generates strongly secure secret keys.

• Encoding and decoding complexities are polynomial in N .

• Characterize achievable secret key rates when joint distribution of sources is a Markov tree.

Low-Density Construction-A (LDA) Lattices

• Lattices constructed from low-density parity-check (LDPC) codes.

• Proposed by di Pietro et al. (2012) [6].

• Admit low-complexity message-passing decoders.

• We studied some structural properties of these lattices.

• Specifically, we showed that they are good for packing and MSE quantization, and their duals are good for
packing [4].

• Under closest lattice point decoding, nested LDA lattice codes achieve capacity of AWGN channel (di
Pietro et al. 2014) [7].

• They are also useful for communication over other Gaussian networks, vector quantization, and physical-
layer security [4].

Concatenated Lattice Codes with Polynomial Encoding and
Decoding Complexity

Concatenated lattice codes achieve the capacity of the AWGN channel. [5]

• Concatenating with outer Reed-Solomon code:
Encoding and decoding complexity: O(N2) and Error probability: e−Ω(N).

• Concatenating with outer expander code:
Encoding complexity: O(N2), Decoding complexity: O(N log2 N) and Error probability: e−Ω(N).

First constructions to have poly-time complexity and exponentially decaying probability of error.
Extensions to Gaussian wiretap channel, Physical-layer network coding and Secret key generation.
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