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Synchronization via Procrastination
• Readers:

B Do not synchronize with writers
B Are wait-free and scale linearly

• Writers:
B Copy the object and update copied version
B Wait for pre-existing readers referring the old version to complete
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Grace Period Computation in the Linux Kernel
RCU in the Linux kernel restricts readers from:

(i) holding reference to an object outside the read-side critical section
(ii) relinquishing the CPU inside a read-side critical section
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Bursty freeing of memory

• Object cache flushing due to overflow
• Slab cache shrinking
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Extended object lifetimes
Deferred objects are not freed as soon as they are safe:

• Triggering of interrupts, Preemption
• Throttling the processing of deferred objects to avoid jitters
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Synchronization via Procrastination from Memory
Allocator’s Point of View

• Frequent allocation and freeing of objects
• Allocation is spread over an interval of time. Freeing occurs in

bursts
• Reclamation of safe deferred objects is controlled by

synchronization mechanism

Hints about the future

Deferred frees provide “precise hints” about the memory
regions that are about to be freed
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The Prudence Dynamic Memory Allocator

The basic design principle is to have deferred objects visible and processed in the memory allocator

Requirements

• Interface to defer the freeing of an object
• Identify safe time to reclaim deferred objects

Design

• Export a new API to defer free an object
• Integrate synchronization mechanism with Prudence to identify the

safe time to reclaim deferred objects

An individual slab cache in Prudence
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Optimization during object cache refill

Safe deferred objects in latent cache are merged
with the object cache
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Latent cache pre-flush

Prudence initiates latent cache pre-flush if it
foresees an object cache flush

CPU 1

Node 1

. . .

. . .

Prudence

object cache latent cache

Full List Partial List Free List

pre-flush

Slab pre-movement

Prudence moves a slab between full, partial and
free lists if it foresees such a movement in the

future
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Reducing total fragmentation with hints
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Results - Application/Synthetic Benchmarks (Intel Xeon processor, 64 CPUs (4 sockets, 8 cores/socket, 2-way HT), 252 GB physical memory, Linux 3.17 kernel)
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Improvement in overall performance

Results - Micro Benchmark

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

32 64 128 256 512 1024 2048 4096

A
llo

c-
D

e
fe

rF
re

e
 P

a
ir

s/
S
e
c 

[x
1

0
0

0
]

Object Size (Bytes)

SLUB
Prudence

Summary

• Synchronization via procrastination has direct impact on the
performance of memory allocators
• Performance impact can be avoided by having deferred objects visible to

memory allocators
• Deferred frees provide hints about the memory regions that are

about to be freed
• Optimizations based on hints can be exploited to improve the

performance of memory allocators

Reference: ”Prudent Memory Reclamation in Procrastination-Based
Synchronization“, Aravinda Prasad, K Gopinath, ASPLOS 2016




