
Prudent Memory Reclamation in Procrastination-Based Synchronization
Aravinda Prasad, K Gopinath

{aravinda, gopi}@csa.iisc.ernet.in
Computer Science & Automation (CSA), Indian Institute of Science (IISc), Bangalore

Synchronization via Procrastination
• Readers:

B Do not synchronize with writers
B Are wait-free and scale linearly

• Writers:
B Copy the object and update copied version
B Wait for pre-existing readers referring the old version to complete

Ti
m

e

Q’

P RQ

Q’

RQ

Defer Free

P

Q’P R

-

P RQ

Allocate

Copy and Update

Grace Period

High slab churn rate

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

To
ta

l
U

se
d
 M

e
m

o
ry

 (
G

B
y
te

s)

Time (Seconds)

out-of-memorySLUB
Prudence

Grace Period Computation in the Linux Kernel
RCU in the Linux kernel restricts readers from:

(i) holding reference to an object outside the read-side critical section
(ii) relinquishing the CPU inside a read-side critical section

Grace Period

Update

CPU 1

CPU 2

CPU n

CPU 3

CPU 4

b bc

rcu_read_lock()

Free

Time

rcu_read_unlock()

b b bc bc

context switch

Bursty freeing of memory

• Object cache flushing due to overflow
• Slab cache shrinking

CPU 1

Node 1

. . .

. . .

Page Allocator

Slab Allocator

RCU

safe deferred objects

free

Bursty freeing of memory

Extended object lifetimes
Deferred objects are not freed as soon as they are safe:

• Triggering of interrupts, Preemption
• Throttling the processing of deferred objects to avoid jitters

CPU 1

Node 1

. . .

. . .

malloc

Page Allocator

Slab Allocator

RCU

safe deferred objects

Extended Object Lifetime

Synchronization via Procrastination from Memory
Allocator’s Point of View

• Frequent allocation and freeing of objects
• Allocation is spread over an interval of time. Freeing occurs in

bursts
• Reclamation of safe deferred objects is controlled by

synchronization mechanism

Hints about the future

Deferred frees provide “precise hints” about the memory
regions that are about to be freed

Grace Period
Update b bc Free

Time

Hint

The Prudence Dynamic Memory Allocator

The basic design principle is to have deferred objects visible and processed in the memory allocator

Requirements

• Interface to defer the freeing of an object
• Identify safe time to reclaim deferred objects

Design

• Export a new API to defer free an object
• Integrate synchronization mechanism with Prudence to identify the

safe time to reclaim deferred objects

An individual slab cache in Prudence

Full List Partial List Free List

Node 1

shrinkgrow

object cache

refill

CPU 1

Page Allocator

latent cache

pre-flush

malloc/free free-deferred

flush

CPU 2 CPU m

Free Object Inuse Object Deferred Object

slab latent slab

Node n

Optimization during object cache refill

Safe deferred objects in latent cache are merged
with the object cache

CPU 1

Node 1

. . .

. . .

malloc

Page Allocator

safe deferred objects

Prudence

object cache latent cache

slab latent slab

Full List Partial List Free List

Latent cache pre-flush

Prudence initiates latent cache pre-flush if it
foresees an object cache flush

CPU 1

Node 1

. . .

. . .

Prudence

object cache latent cache

Full List Partial List Free List

pre-flush

Slab pre-movement

Prudence moves a slab between full, partial and
free lists if it foresees such a movement in the

future

CPU 1

Node 1

. . .

. . .

Prudence

object cache latent cache

Full List Partial List Free List

Reducing total fragmentation with hints

Slab A

Slab B

free

allocated

deferred objectSlab A

Slab B

(a) Without Hints (b) With Hints

Results - Application/Synthetic Benchmarks (Intel Xeon processor, 64 CPUs (4 sockets, 8 cores/socket, 2-way HT), 252 GB physical memory, Linux 3.17 kernel)

Throughput

 0

 20

 40

 60

 80

 100

Postmark Netperf Apache PostgreSQL

%
 o

f
d

e
fe

rr
e
d

 f
re

e
s

Percentage of deferred frees out of total memory free
operations

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

Postmark Netperf Apache PostgreSQL

Tr
a
n
sa

ct
io

n
s/

S
e
c

(N
o
rm

a
liz

e
d

)

SLUB
Prudence

Improvement in overall performance

Results - Micro Benchmark

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

32 64 128 256 512 1024 2048 4096

A
llo

c-
D

e
fe

rF
re

e
 P

a
ir

s/
S
e
c

[x
1

0
0

0
]

Object Size (Bytes)

SLUB
Prudence

Summary

• Synchronization via procrastination has direct impact on the
performance of memory allocators
• Performance impact can be avoided by having deferred objects visible to

memory allocators
• Deferred frees provide hints about the memory regions that are

about to be freed
• Optimizations based on hints can be exploited to improve the

performance of memory allocators

Reference: ”Prudent Memory Reclamation in Procrastination-Based
Synchronization“, Aravinda Prasad, K Gopinath, ASPLOS 2016

