Prudent Memory Reclamation in Procrastination-Based Synchronization

Aravinda Prasad, K Gopinath

{aravinda, gopi}@csa.iisc.ernet.in
Computer Science & Automation (CSA), Indian Institute of Science (11Sc), Bangalore

Synchronization via Procrastination Grace Period Computation in the Linux Kernel

= Readers: RCU in the Linux kernel restricts readers from:

> Do not synchronize with writers
> Are wait-free and scale linearly

(ii) relinquishing the CPU inside a read-side critical section

Extended object lifetimes

Deferred objects are not freed as soon as they are safe:

(i) holding reference to an object outside the read-side critical section

= Triggering of interrupts, Preemption
» Throttling the processing of deferred objects to avoid jitters

= Writers: Grace Period safe deferred objects
> Copy the object and update copied versi A7
or?y e o Jec. a.n update cople. version | CPU : : . : : l-1
> Wait for pre-existing readers referring the old version to complete .
CPU 2 Update o | ! ® olree
— [Allocate CPU3 —— e e o | | 00 nev
malloc
s P 3 o0 3 r kF--= CPU 4 : R
Slab Allocator
' rcu_read_lock() rcu_read_unlock() context switch CPU 1
o Copy and Update CPUn : : ¢ — Time
N P . Q . R - > Node 1 lT
v Bursty freeing of memory .
F 7 . .
/| Q \ = Object cache flushing due to overflow
7 o Lk -- = Slab cache shrinking VT
Defer Free safe deferred objects Page Allocator
e e e = Extended Object Lifetime
Grace Period d .
A free
A s o e TN nev Synchronization via Procrastination from Memory
Allocator’s Point of View
4 Slab Allocator
High slab churn rate CPU - i = Frequent allocation and freeing of objects
= Allocation is spread over an interval of time. Freeing occurs in
A
300 | | Node 1 l bursts) : .
oS out-of—rQimory] % - Reclamation of safe deferred objects is controlled by
. 250 | - e synchronization mechanism
£
G 200 .
> A
o []
£ 150 . . vl Hints about the future
= d Page Allocator
D
ré: 100 il Bursty freeing of memory Deferred frees provide “precise hints” about the memory
s . regions that are about to be freed
. Grace Period ,
0 | | | Update . ' > Free
0 50 100 150 200
Time (Seconds) T
Hint
The Prudence Dynamic Memory Allocator
The basic design principle is to have deferred objects visible and processed in the memory allocator
An individual slab cache in Prudence
: malloc/free free-deferred
Requirements A A
| I | I
¥y CPU1 ¥y CPUm
 Interface to defer the freeing of an object F‘j
 |dentify safe time to reclaim deferred objects coeo oo %
object cache | latent cache
. refill uﬂush l pre-flush Al
Design Node 1 Node n
» Export a new API to defer free an object |l i |‘ 5 |l ril I‘ ‘ \ 53
» Integrate synchronization mechanism with Prudence to identify the : ot
safe time to reclaim deferred objects Full List Partial List Free List slab latent slab

grow ﬂ shrink

\] . . :
Page Allocator Free Object [JInuse Object [} Deferred Object
Optimization during object cache refill Slab)
Latent cache pre-flush ab _pre-movemen : . L
, , Reducing total fragmentation with hints
Safe deferred objects in latent cache are merged
with the object cache Prudence initiates latent cache pre-flush if it Prudence moves a slab between full, partial and
o foresees an object cache flush free lists if it foresees such a movement in the allocated —~
4 - o mm]| [mm
rudence [[Prudence
CPU 1 <::|..-1\ “. Prud CPU 1 ’_il '_:I .. . F |J I |J Prudence Slab A Slab A deferred object
obje(1 $che latent cache \safe deferred objects dbjet cache | latet cache pre—flush object cache | latent cache / /
P slab latent slab e Node 1 //_\\ //_\\ - e |.|: |% eee J
’:j ’:j H ’:IJ‘H ’:jig I ’:j = Slab B Slab B

?‘m @ Full List Partial List Free List — @ @ (a) Without Hints (b) With Hints

* Full List Partial List Free List

|

Page Allocator

Results - Application/Synthetic Benchmarks (Intel Xeon processor, 64 CPUs (4 sockets, 8 cores/socket, 2-way HT), 252 GB physical memory, Linux 3.17 kernel)

Throughput Results - Micro Benchmark
8000
S 15 SLUB —x—
o SLUB — 7000 - Prudence —e— |
wn 100 = . Prudence ——1 | 3
(O] © 1.4 S
v 80 b] § 2 6000 T 7
Y— o O 4 ~
S 6O L |2 & 5000 - l\! .
= 3 5 \°\
S 40 b B} £ 4000 - o .
S c 3 \,
S 20 fo o T EE: £ 3000 —]
2 0 —— @ é: 2000 - 3
Postmark Netperf Apache PostgreSQL © 2 =
P P gresSQ = < 1000 - \x/x T 7
Postmark Netperf Apache PostgreSQL T
0 I I I I I I I\>|<
Percentage of deferred frees out of total memory free 3 e 128 256 512 1024 2048 4096

operations

Improvement in overall performance Object Size (Bytes)

Summary

= Synchronization via procrastination has direct impact on the
performance of memory allocators
» Performance impact can be avoided by having deferred objects visible to
memory allocators
» Deferred frees provide hints about the memory regions that are
about to be freed
« Optimizations based on hints can be exploited to improve the
performance of memory allocators

Reference: "Prudent Memory Reclamation in Procrastination-Based
Synchronization”, Aravinda Prasad, K Gopinath, ASPLOS 2016

