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Synchronization via Procrastination Grace Period Computation in the Linux Kernel

= Readers: RCU in the Linux kernel restricts readers from:

> Do not synchronize with writers
> Are wait-free and scale linearly

(ii) relinquishing the CPU inside a read-side critical section

Extended object lifetimes

Deferred objects are not freed as soon as they are safe:

(i) holding reference to an object outside the read-side critical section

= Triggering of interrupts, Preemption
» Throttling the processing of deferred objects to avoid jitters
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Results - Application/Synthetic Benchmarks (Intel Xeon processor, 64 CPUs (4 sockets, 8 cores/socket, 2-way HT), 252 GB physical memory, Linux 3.17 kernel)
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Summary

= Synchronization via procrastination has direct impact on the
performance of memory allocators
» Performance impact can be avoided by having deferred objects visible to
memory allocators
» Deferred frees provide hints about the memory regions that are
about to be freed
« Optimizations based on hints can be exploited to improve the
performance of memory allocators
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