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Quick introduction to stochastic approximation algorithms
Consider the following recursion in Rd (d ≥ 1):

xn+1 = xn + a(n) [h(xn) + Mn+1] , for n ≥ 0, where (1)

(i) h : Rd→ Rd is a Lipschitz continuous function.
(ii) a(n) > 0, for all n, is the step-size sequence satisfying

∑∞
n=0 a(n) =∞ and

∑∞
n=0 a(n)

2 <∞.
(iii)Mn, n ≥ 1, is a sequence of martingale difference terms that constitute the noise.

In 1996, Benaı̈m [1] showed that the asymptotic behavior of a stochastic recursive equation can be
studied by analyzing the asymptotic behavior of the associated o.d.e.

Borkar-Meyn theorem for stochastic recursive inclusions, [3]
The objective is to develop sufficient conditions that are easily verifiable for both stability and con-
vergence of set-valued dynamical systems given by:

xn+1 = xn + a(n) [yn + Mn+1] , for n ≥ 0, where (2)

yn ∈ h(xn) and h : Rd→ {subsets of Rd} is a Marchaud map.

Although there are two different set of assumptions in [3], we consider only one here.

Assumptions
h is a Marchaud map. The step-size and Martingale noise sequence satisfy the standard assumptions.
Below we state the key assumptions of our paper, see [3].

For c ≥ 1 and x ∈ Rd, define hc(x) = {y | cy ∈ h(cx)}. Further, for each x ∈ Rd, define
h∞(x) := Liminfc→∞ hc(x) i.e. the closure of the lower-limit of {hc(x)}c≥1.

(A4) h∞(x) is non-empty for all x ∈ Rd. Further, the differential inclusion ẋ(t) ∈ h∞(x(t)) has an
attracting set, A, with B1(0) as a subset of its fundamental neighborhood. This attracting set is
such that A ⊆ B1(0).

(A5) Let cn ≥ 1 be an increasing sequence of integers such that cn ↑ ∞ as n→∞. Further, let xn → x
and yn → y as n →∞, such that yn ∈ hcn(xn), ∀n, then y ∈ h∞(x).

Define δ1 := sup
x∈A
‖x‖ and pick real numbers δ2, δ3 and δ4 such that sup

x∈A
‖x‖ = δ1 < δ2 < δ3 < δ4 < 1.

Outline of the proof
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Figure 1: Linearly interpolated trajectory
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o.d.e. trajectories with staring points on the iterate−trajectory.

Figure 2: Tracking the associated o.d.e.

We provide a brief outline of our approach to prove the stability of a SRI under assumptions
(A1)− (A5).
X Divide the time line, [0,∞), approximately into intervals of length T .
X T is such that any solution to ẋ(t) ∈ h∞(x(t)) with starting point in the unit ball will be “inside”

the unit ball and “close” to the attractor after time T .
X Construct the linearly interpolated trajectory from the given stochastic recursive inclusion. A se-

quence of ‘rescaled’ trajectories of length T is constructed as follows: At the beginning of each
T -length interval we observe the trajectory to see if it is outside the unit ball, if so we scale it back
to the boundary of the unit ball. This scaling factor is then used to scale the ‘rest of the T -length
trajectory’.

X To show that the iterates are bounded almost surely we need to show that the linearly interpolated
trajectory does not ‘run off’ to infinity. To do so we assume that this is not true and show that there
exists a subsequence of the rescaled T -length trajectories that has a solution to ẋ(t) ∈ h∞(x(t)) as
a limit point in C([0, T ],Rd).

X We choose and fix T such that any solution to ẋ(t) ∈ h∞(x(t)) with an initial value inside the unit
ball is close to the origin at the end of time T . In this paper we choose T = T (δ2 − δ1) + 1.

X We then argue that the linearly interpolated trajectory is forced to make arbitrarily large ‘jumps’
within time T . The Gronwall inequality is then used to show that this is not possible.

X Once we prove stability of the recursion we invoke Theorem 3.6 & Lemma 3.8 from Benaı̈m, Hof-
bauer and Sorin [2] to conclude that the limit set is a closed, connected, internally chain transitive
and invariant set associated with ẋ(t) ∈ h∞(x(t)).

Application: The problem of approximate drift

X In practice the drift function cannot be calculated accurately. A natural question is the following:
Are the iterates stable? If so, where do they converge.

X We use our framework to show that the algorithm with approximate drift is stable provided the
algorithm with “accurate drift” was stable. Further, we show that the algorithm converges to a
neighborhood of the “intended” set, where the neighborhood is dependent on the drift errors.

Gradient based learning algorithms with constant-error gradient estimators,
[6]

X Implementations of stochastic gradient search algorithms such as back propagation typically rely
on finite difference (FD) approximation methods. These methods are used to approximate the ob-
jective function gradient in steepest descent algorithms as well as the gradient and Hessian inverse
in Newton based schemes.

X Hitherto in literature, the convergence analyses critically require that perturbation parameters in the
estimators of the gradient/Hessian approach zero. However, in practice, the perturbation parameter
is often held fixed to a ‘small’ constant resulting in constant-error estimates. item In [6], we present
a framework to analyze the aforementioned.

X Easily verifiable conditions are presented for stability and convergence when using such FD esti-
mators for the gradient/Hessian. In addition, our framework dispenses with a critical restriction on
the step-sizes (learning rate) when using FD estimators, see [6] for details.

Stochastic recursive inclusion in two timescales with an applica-
tion to the Lagrangian dual problem, [5]
We consider the following coupled iteration.

xn+1 = xn + a(n)
[
un +M1

n+1

]
,

yn+1 = yn + b(n)
[
vn +M2

n+1

]
,

(3)

where un ∈ h(xn, yn), vn ∈ g(xn, yn) such that h and g are Marchaud maps. The step-size satisfies
the standard assumptions and b(n)

a(n)
→ 0. The iterates are assumed to be stable. The following is a key

assumption that couples the x and the y iterates, see [5] for more details.

(A5) The map λ : y → {globally attracting set of ẋ(t) ∈ h(x(t), y)} is upper semi-continuous.
ẏ(t) ∈ G(y(t)) has a globally attracting set, A0, that is also Lyapunov stable. Here G(y) := co( ⋃
x∈λ(y)

g(x, y)

)
. Further, the y iterates are track the aforementioned DI .

Main result

Almost surely the set of accumulation points is given by{
(x, y) | lim

n→∞
d ((x, y), (xn, yn)) = 0

}
⊆
⋃
y∈A0

{(x, y) | x ∈ λ(y)} . (4)

Application: The Lagrangian dual problem

X To solve the constrained minimization problem one often constructs an associated two timescale
stochastic approximation algorithm.

X The analysis involves considering a family of minimum sets. Hitherto in literature these minimum
sets are assumed to be singletons.

X We extend this analysis to the general case of set-valued minimum sets.

Stability of Stochastic Approximations with ‘Controlled Markov’
Noise and Temporal Difference Learning, [4]
X In [4] a ‘stability theorem’ for stochastic approximation (SA) algorithms with ‘controlled Markov’

noise. The iterates are shown to track a solution to a differential inclusion defined in terms of the
ergodic occupation measures associated with the ‘controlled Markov’ process.

X We improve the general algorithm of Temporal Difference Learning using our framework.
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