

Use case scenarios

Integral part of cyber-physical systems, for example

- Urban sensing systems
- Integrated environment monitoring
- Industrial automation
- Civilian surveillance

Ingredients of multihop sensor networks

- **Sensor nodes:** equipped with sensor modules, finite battery, finite storage, an energy harvesting device and a single antenna radio.
- **Gateway nodes:** larger nodes equipped with a wireless interface for communications with the WSN, and a wired interface for communications with the controlling station.
- **Adhoc architecture:** offers a range of benefits, including reliability, robustness, quick and easy network deployment, energy efficient network operations etc.

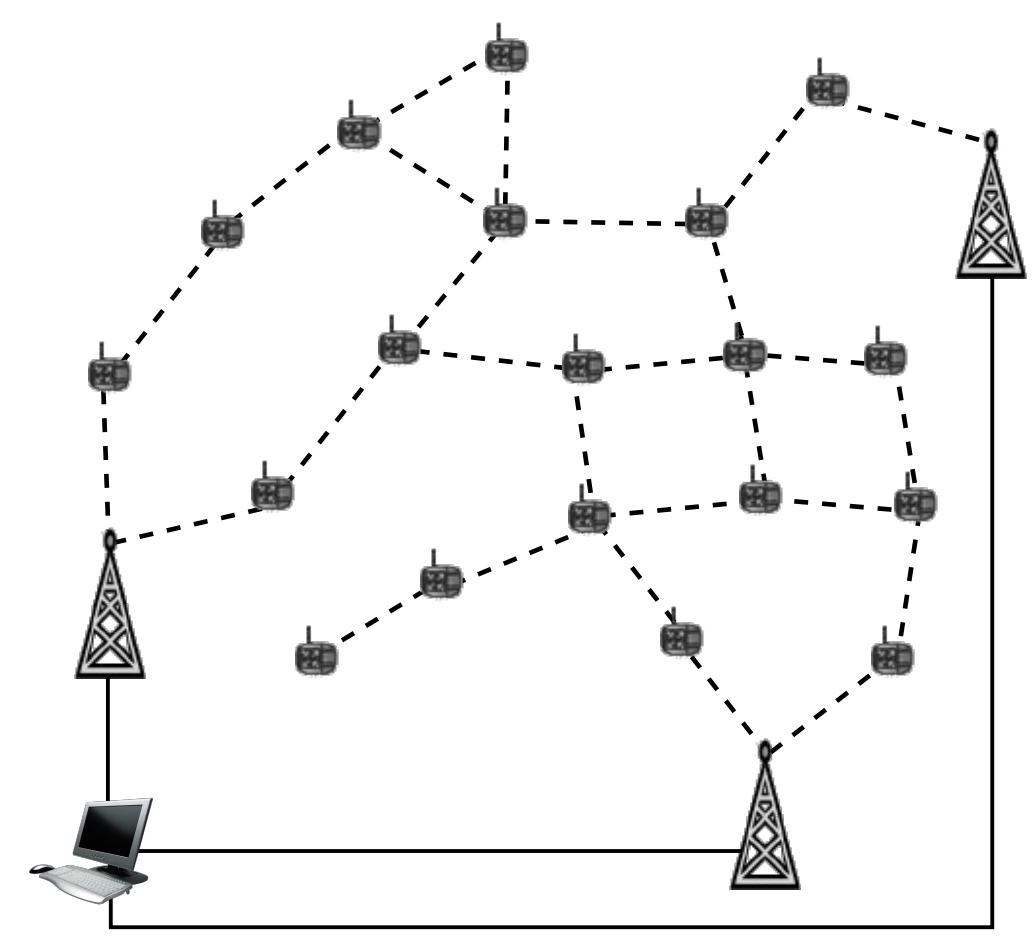


Figure 1: A multihop energy harvesting wireless sensor network with multiple gateway (sink) nodes; the dotted lines represent the wireless links.

A utility function

- Time is divided into slots of length σ .
- $d_i(t)$: fraction of time sensor node i is sensing the environment in the t^{th} slot.
- Let $\lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T d_i(t) = d_i$ - fraction of time sensor node i senses. We define the utility as $\sum_{i \in \mathcal{N}} U_i(d_i)$; U_i 's are increasing concave function.
- We use this utility function to compare and contrast different deployment scenarios

Long-term time-averaged system

- In such WSNs, typically, the goal is to come up with optimal decision rules $\{\mathbf{d}(t), \mathbf{Y}(t), \mathbf{a}(t), t \geq 1\}$; usually posed as **Markov decision process (MDP)**.
- However, in our setting, the reward depends on the long-term time-averaged quantities $\{d_1, d_2, \dots, d_n\}$.
- This enables us to look at the long-term time-averaged system.
- It can be shown that the long-term time-averaged system under consideration should satisfy the following energy constraint

$$e^s \cdot d_j + \sum_{k \in \mathcal{N}} e \cdot \left(\sum_{l \in \mathcal{O}(j)} y_{kl} + \sum_{l \in \mathcal{I}(j)} y_{lk} \right) \leq e_j^h \forall j \in \mathcal{N} \quad (1)$$

A long-term time-averaged optimization problem

$$P_1 : \max_{\{\mathbf{a} \geq 0, \mathbf{Y} \geq 0, \mathbf{d} \in [0,1]^{|\mathcal{N}|}\}} \sum_{j \in \mathcal{N}} U_j(d_j)$$

Subject to:

$$\sum_{l \in \mathcal{O}(j)} y_{jl} = r^s \cdot d_j, \quad \sum_{l \in \mathcal{I}(j)} y_{jl} = 0 \quad \forall j \in \mathcal{N} \quad (2)$$

no accumulation at the sources

$$\sum_{s \in \mathcal{S}} \sum_{l \in \mathcal{I}(s)} y_{jl} = r^s \cdot d_j \quad \forall j \in \mathcal{N} \quad (3)$$

no packet drops

$$\sum_{l \in \mathcal{I}(j)} y_{kl} = \sum_{l \in \mathcal{O}(j)} y_{kl} \quad \forall j \in \mathcal{N}, \forall k \in \mathcal{N} \setminus \{j\} \quad (4)$$

flow conservation

$$e^s \cdot d_j + \sum_{k \in \mathcal{N}} e \cdot \left(\sum_{l \in \mathcal{O}(j)} y_{kl} + \sum_{l \in \mathcal{I}(j)} y_{lk} \right) \leq e_j^h \forall j \in \mathcal{N} \quad (5)$$

rate of energy consumption \leq rate of energy harvesting

$$\sum_{k \in \mathcal{N}} y_{kl} \leq (\mathbf{M} \cdot \mathbf{a})_l \quad \forall l \in \mathcal{L} \quad (6)$$

rate of flow on link \leq effective link capacity

$$\sum_I a_I \leq 1 \quad (7)$$

two different MIS cannot be active simultaneously

- \mathcal{N} set of sensor nodes
- d_j average fraction of time node j senses
- r^s maximum rate at which sensor node can generate data
- \mathcal{S} set of sink/gateway nodes
- \mathcal{L} set of wireless links
- \mathbf{M} matrix representing the collection of maximal independent sets (MIS)
- \mathbf{a} schedule vector; average fraction of time each MIS is scheduled
- y_{jl} average rate of flow of node j 's traffic, on the wireless link l
- e_j^h rate at which node j harvests energy
- e energy needed to transmit or receive data at unit rate
- e^s rate of energy consumed for sensing
- $\mathcal{O}(j)$ the set of directed links that originate at node j
- $\mathcal{I}(j)$ the set of directed links that terminate at node j
- $U_j(\cdot)$ concave twice differentiable function

An alternate formulation

- Computing matrix \mathbf{M} in an arbitrary graph is a well-known **NP-hard** problem.
- Since problem P_1 satisfies **Slater's condition**, it has no duality gap. Therefore, we can optimally solve problem P_1 , by solving its dual problem. However, to solve the dual problem of P_1 , we need to find a **maximum weighted matching** in the **directed graph \mathcal{G}** . Complexity of computing a **maximum weighted matching** in a graph with **directed edges** remains unknown.
- Alternatively, we relax the MIS constraints into clique constraints. This relaxation allows us to handle the NP-hardness of the time-averaged problem P_1 while achieving the optimum value of problem P_1 .
- For the primary inference model, under clique constraints, we obtain the following **necessary condition**

$$\sum_{l \in \mathcal{I}(j) \cup \mathcal{O}(j)} \frac{\sum_{k \in \mathcal{N}} y_{kl}}{c_l^0} \leq 1 \quad \forall j \in \mathcal{N} \quad (8)$$

where c_l^0 is the capacity of link $l \in \mathcal{L}$.

After replacing the MIS constraint in problem P_1 with the clique constraints, we obtain the following optimization problem

$$P_2 : \max_{\{\mathbf{c} \geq 0, \mathbf{Y} \geq 0, \mathbf{d} \in [0,1]^{|\mathcal{N}|}\}} \sum_{j \in \mathcal{N}} U_j(d_j)$$

Subject to: constraints (2), (3), (4), (5), (8) and $\sum_{k \in \mathcal{N}} y_{kl} \leq c_l \quad \forall l \in \mathcal{L}$

The dual problem

Relaxing the capacity and energy constraints, we obtain the dual of problem P_2 as

$$\min_{\beta \geq 0, \gamma \geq 0} D(\beta, \gamma)$$

where

$$D(\beta, \gamma) = \max_{\mathbf{d}, \mathbf{Y}, \mathbf{c}} \left\{ \sum_{j \in \mathcal{N}} \left(U_j(d_j) + \beta_j \cdot \left(e_j - e^s d_j - \sum_{k \in \mathcal{N}} e \cdot \left(\sum_{l \in \mathcal{O}(j)} y_{kl} + \sum_{l \in \mathcal{I}(j)} y_{lk} \right) \right) \right) + \sum_{l \in \mathcal{L}} \gamma_l \left(c_l - \sum_{k \in \mathcal{N}} y_{kl} \right) \right\}$$

Subject to: constraints (2), (3), (4), (8) and $\mathbf{c} \geq 0, \mathbf{Y} \geq 0, \mathbf{d} \in [0,1]^{|\mathcal{N}|}$

A solution approach

- This dual can be decomposed into the following sub-problems that can be solved independent of each other.

Scheduling subproblem

$$\max_{\mathbf{c} \geq 0} \gamma^T \mathbf{c} \quad \text{subject to constraint (8)}$$

Joint sensing fraction allocation and routing subproblem

$$\max_{\mathbf{d}, \mathbf{Y}} \left\{ \sum_{j \in \mathcal{N}} (U_j(d_j) - \beta_j e^s d_j) - \sum_{k \in \mathcal{N}} \sum_{l \in \mathcal{L}} \gamma_l \cdot y_{kl} \right. \\ \left. - \sum_{k \in \mathcal{N}} \left(\sum_{j \in \mathcal{N}} \beta_j \cdot e \cdot \left(\sum_{l \in \mathcal{O}(j)} y_{kl} + \sum_{l \in \mathcal{I}(j)} y_{lk} \right) \right) \right\} \quad (9)$$

Subject to: constraints (2), (3), (4) and $\mathbf{Y} \geq 0, \mathbf{d} \in [0,1]^{|\mathcal{N}|}$

- The solution to the above problem is as follows

$$d_j(\beta, \gamma) = \left[U'^{-1} \left(\beta_j \cdot e^s + r^s \cdot c_j^{lcp}(\beta, \gamma) \right) \right]^+$$

where c_j^{lcp} is the cost of least-cost path and is given as

$$c_j^{lcp} = \arg \min_{s \in \mathcal{S}} \min_{P \in \mathcal{P}_{js}} \left(\sum_{l \in P \cap \mathcal{L}} \gamma_l + 2e \cdot \sum_{k \in P \cap \mathcal{N}} \beta_k \right)$$

- Let $\mathbf{p} = [\beta, \gamma]^T$ denote the price vector. Then, the price vector can be updated using the projected subgradient method as follows

$$\mathbf{p}[m+1] = [\mathbf{p}[m] - \delta \cdot \mathbf{g}(\mathbf{p}[m])]^+$$

Proposition

The optimum values of problems P_1 and P_2 are equal.

Numerical evaluation

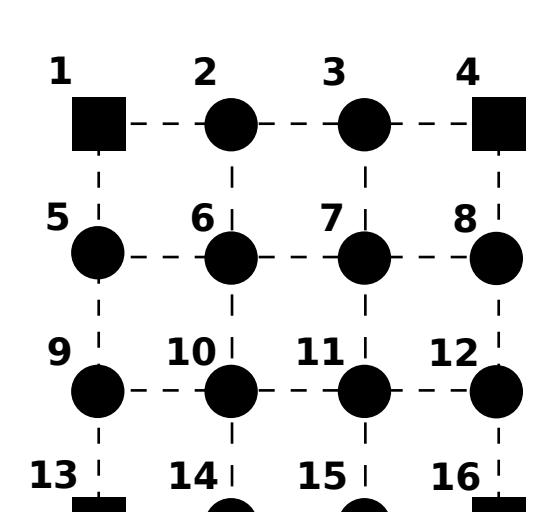


Figure 2: Network G_1

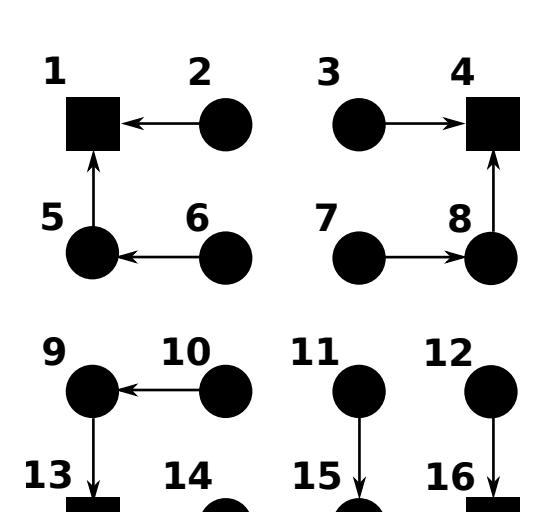


Figure 3: Optimal routes

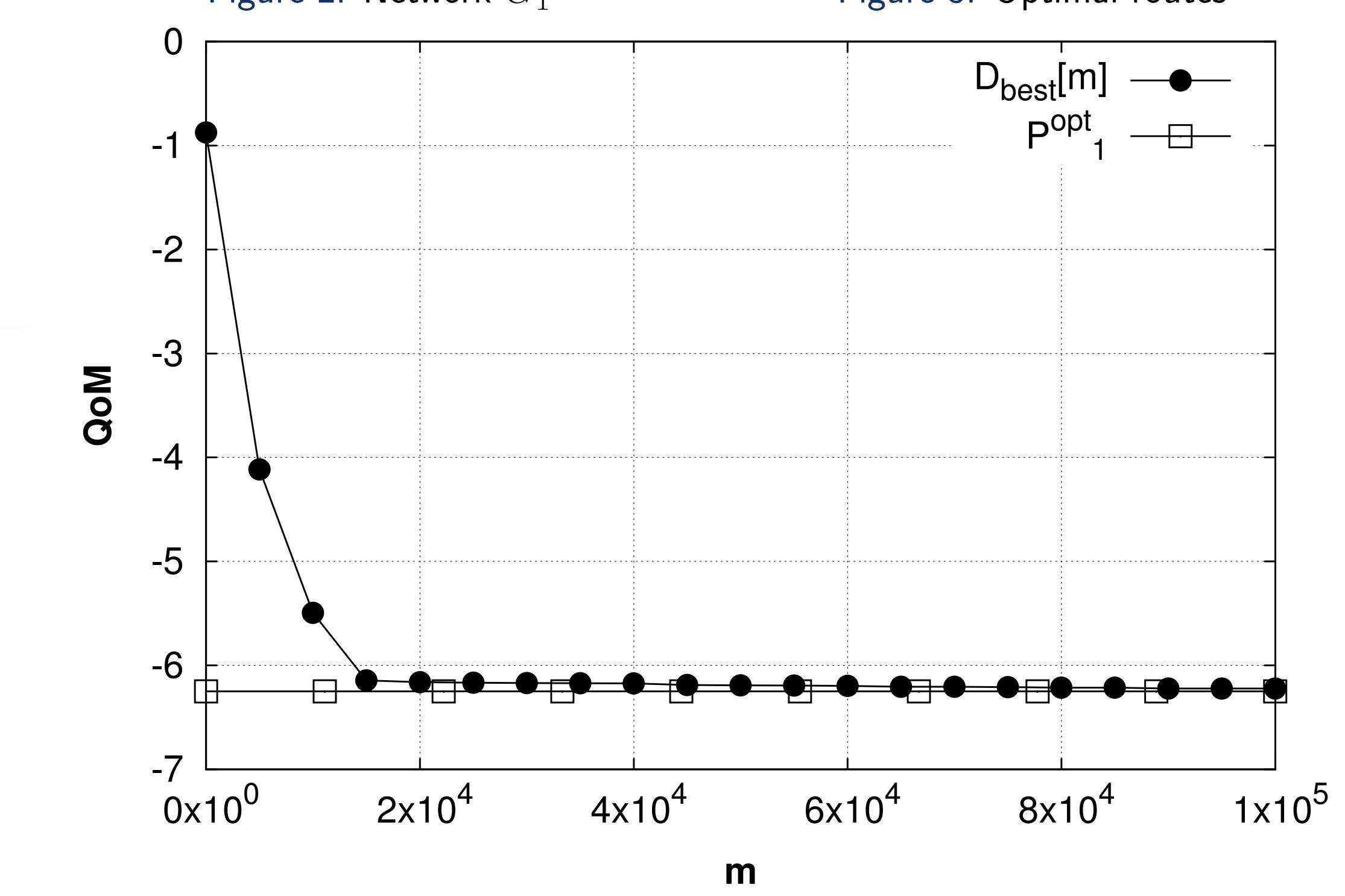


Figure 4: Plot of dual objective achieved by the projected sub-gradient update.