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Use case scenarios

Integral part of cyber-physical systems, for example
• Urban sensing systems
• Integrated environment monitoring
• Industrial automation
• Civilian surveillance

Ingredients of multihop sensor networks

• Sensor nodes: equipped with sensor modules, finite battery,
finite storage, an energy harvesting device and a single antenna
radio.

• Gateway nodes: larger nodes equipped with a wireless interface
for communications with the WSN, and a wired interface for
communications with the controlling station.

• Adhoc architecture: offers a range of benefits, including
reliability, robustness, quick and easy network deployment, energy
efficient network operations etc.

Figure 1: A multihop energy harvesting wireless sensor network with multiple gateway
(sink) nodes; the dotted lines represent the wireless links.

A utility function

• Time is divided into slots of length σ.

• di(t) : fraction of time sensor node is sensing the environment in
the tth slot.

• Let limT→∞
1
T

∑T
t=1 di(t) = di - fraction of time sensor node i

senses. We define the utility as ∑i∈N Ui(di); Ui’s are increasing
concave function.

• We use this utility function to compare and contrast different
deployment scenarios

Long-term time-averaged system

• In such WSNs, typically, the goal is to come up with optimal
decision rules {d(t),Y(t), a(t), t ≥ 1}; usually posed as Markov
decision process (MDP).

• However, in our setting, the reward depends on the long-term
time-averaged quantities {d1, d2, · · · , dn}.

• This enables us to look at the long-term time-averaged system.
• It can be shown that the long-term time-averaged system under
consideration should satisfy the following energy constraint

es · dj +
∑
k∈N

e ·
( ∑
l∈O(j)

ykl +
∑
l∈I(j)

ykl

)
≤ ehj ∀j ∈ N (1)

A long-term time-averaged optimization problem

P1 : max
{a≥0, Y≥0, d∈[0,1]|N |}

∑
j∈N

Uj(dj)

Subject to:∑
l∈O(j)

yjl = rs · dj,
∑
l∈I(j)

yjl = 0 ∀j ∈ N (2)

no accumulation at the sources∑
s∈S

∑
l∈I(s)

yjl = rs · dj ∀j ∈ N (3)

no packet drops∑
l∈I(j)

ykl =
∑
l∈O(j)

ykl ∀j ∈ N ,∀k ∈ N \ {j} (4)

flow conservation

es · dj +
∑
k∈N

e ·
( ∑
l∈O(j)

ykl +
∑
l∈I(j)

ykl

)
≤ ehj ∀j ∈ N (5)

rate of energy consumption ≤ rate of energy harvesting∑
k∈N

ykl ≤ (M · a)l ∀l ∈ L (6)

rate of flow on link ≤ effective link capacity∑
I

aI ≤ 1 (7)

two different MIS cannot be active simultaneously

N set of sensor nodes
dj average fraction of time node j senses
rs maximum rate at which sensor node

can generate data
S set of sink/gateway nodes
L set of wireless links

M matrix representing the collection of
maximal independent sets (MIS)

a schedule vector; average fraction of
time each MIS is scheduled

yjl average rate of flow of node j’s traffic,
on the wireless link l

ehj rate at which node j harvests energy
e energy needed to transmit or receive
data at unit rate

es rate of energy consumed for sensing
O(j) the set of directed links that originate

at node j
I(j) the set of directed links that terminate

at node j
Uj(·) concave twice differentiable function

An alternate formulation

• Computing matrix M in an arbitrary graph is a well-known NP-hard problem.
• Since problem P1 satisfies Slater’s condition, it has no duality gap. Therefore, we can optimally solve problem
P1, by solving its dual problem. However, to solve the dual problem of P1, we need to find a maximum
weighted matching in the directed graph G. Complexity of computing a maximum weighted matching in a
graph with directed edges remains unknown.

• Alternatively, we relax the MIS constraints into clique constraints. This relaxation allows us to handle the
NP-hardness of the time-averaged problem P1 while achieving the optimum value of problem P1.

• For the primary inference model, under clique constraints, we obtain the following necessary condition∑
l∈I(j)∪O(j)

∑
k∈N ykl
c0
l

≤ 1 ∀j ∈ N (8)

where c0
l is the capacity of link l ∈ L.

After replacing the MIS constraint in problem P1 with the clique constraints, we obtain the following
optimization problem

P2 : max
{c≥0, Y≥0, d∈[0,1]|N |}

∑
j∈N

Uj(dj)

Subject to: constraints (2), (3), (4), (5), (8) and
∑
k∈N

ykl ≤ cl ∀l ∈ L

The dual problem

Relaxing the capacity and energy constraints, we obtain the dual of problem P2 as
min

β≥0,γ≥0
D(β,γ)

where

D(β,γ) = max
d,Y,c

 ∑
j∈N

(
Uj(dj) + βj ·

(
ej − esdj −

∑
k∈N

e ·
( ∑
l∈O(j)

ykl +
∑
l∈I(j)

ykl

)))
+
∑
l∈L

γl

(
cl −

∑
k∈N

ykl

)
Subject to: constraints (2), (3), (4), (8) and c ≥ 0, Y ≥ 0, d ∈ [0, 1]|N |

A solution approach

• This dual can be decomposed into the following sub-problems that
can be solved independent of each other.

• Scheduling subproblem
max
c≥0

γTc subject to constraint (8)

• Joint sensing fraction allocation and routing
subproblem

max
d,Y

 ∑
j∈N

(Uj(dj)− βjesdj)−
∑
k∈N

∑
l∈L

γl · ykl

−
∑
k∈N

∑
j∈N

βj · e ·

 ∑
l∈O(j)

ykl +
∑
l∈I(j)

ykl



 (9)

Subject to: constraints (2), (3), (4) and Y ≥ 0,d ∈ [0, 1]|N |

• The solution to the above problem is as follows

dj(β,γ) =
[
U
′−1 (

βj · es + rs · clcpj (β,γ)
)]+

where clcpj is the cost of least-cost path and is given as

clcpj = arg min
s∈S

min
P∈Pjs

 ∑
l∈P∩L

γl + 2e ·
∑

k∈P∩N
βk


• Let p = [β,γ]T denote the price vector. Then, the price vector can
be updated using the projected subgradient method as follows

p[m + 1] = [p[m]− δ · g(p[m])]+

Proposition

The optimum values of problems P1 and P2 are equal.

Numerical evaluation
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Figure 2: Network G1
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Figure 3: Optimal routes
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Figure 4: Plot of dual objective achieved by the projected sub-gradient update.


