A Framework for Designing Multihop Energy Harvesting Sensor

Use case scenarios

Integral part of cyber-physical systems, for example
= Urban sensing systems

= Integrated environment monitoring

« Industrial automation

« Civilian surveillance

Ingredients of multihop sensor networks

» Sensor nodes: equipped with sensor modules, finite battery,
finite storage, an energy harvesting device and a single antenna
radio.

« Gateway nodes: larger nodes equipped with a wireless intertace
for communications with the WSN, and a wired interface for
communications with the controlling station.

« Adhoc architecture: offers a range of benefits, including
reliability, robustness, quick and easy network deployment, energy
eflicient network operations etc.
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Figure 1: A multihop energy harvesting wireless sensor network with multiple gateway

(sink) nodes; the dotted lines represent the wireless links.

A utility function

« Time is divided into slots of length o.

= d;(t) : fraction of time sensor node is sensing the environment in
the t™ slot.

« Let limy_ % Zthl d;(t) = d; - fraction of time sensor node 1
senses. We define the utility as Y ;cn Ui(d;); U;'s are increasing
concave tunction.

« We use this utility function to compare and contrast different
deployment scenarios

Long-term time-averaged system

« In such WSNs, typically, the goal is to come up with optimal
decision rules {d(¢), Y(t),a(t),t > 1}; usually posed as Markov
decision process (MDP).

= However, in our setting, the reward depends on the long-term
time-averaged quantities {dy, ds, - -+ ,d,}.

= This enables us to look at the long-term time-averaged system.

= [t can be shown that the long-term time-averaged system under
consideration should satisty the following energy constraint
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A long-term time-averaged optimization problem

N set of sensor nodes

P1 ) max Z U]<d]) , , :
{a20, Y>0, de[01]N} 2% d; average fraction of time node j senses
Subject to: r® maximum rate at which sensor node
S yp=r-d;, Y yp=0 VieN (2) can gegerate data
1€0(j) 1€1() S set of sink/gateway nodes
no accumulation at the sources L set of wireless links
SN yu=rt-d; VieN (3) M matrix representing the collection of
€8 16T (5) maximal independent sets (MIS)
no packet drops a schedule vector; average fraction of
Z Uil = Z y Vi €N, Vk e N\ {5} (4) time each MIS is scheduled
1€Z(5) 1€0(j) y; average rate of flow of node j’s traffic,
Aow conservation on the wireless link [
| e” rate at which node j harvests energy
e’ - dj+ Z ¢ ( Z Yk T Z ykl) < 6? vieN (5) ]e energy needed to transmit or receive
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, , data at unit rate
rate of energy consumption < rate of energy harvesting

e’ rate of energy consumed for sensing

;\/ yu < (M-a)vie L (6) O(j) the set of directed links that originate
E .
rate of flow on link < effective link capacity at node j

Z(j) the set of directed links that terminate
Za] = (7) at node j
I

two different MIS cannot be active simultaneously Uj(') concave twice differentiable function

An alternate formulation

« Computing matrix M in an arbitrary graph is a well-known NP-hard problem.

« Since problem P satisfies Slater’s condition, it has no duality gap. Therefore, we can optimally solve problem
P, by solving its dual problem. However, to solve the dual problem of P, we need to find a maximum
weighted matching in the directed graph G. Complexity of computing a mazimum weighted matching in a
oraph with directed edges remains unknown.

= Alternatively, we relax the MIS constraints into clique constraints. This relaxation allows us to handle the
NP-hardness of the time-averaged problem P, while achieving the optimum value ot problem P;.

« For the primary inference model, under clique constraints, we obtain the following necessary condition
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where ¢} is the capacity of link [ € L.

After replacing the MIS constraint in problem P with the clique constraints, we obtain the following
optimization problem
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The dual problem

Relaxing the capacity and energy constraints, we obtain the dual of problem P as

g inin D(B,~)
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Subject to:  constraints (2), (3), (4), (8)andc >0, Y >0, de[0,1N

A solution approach

» This dual can be decomposed into the following sub-problems that
can be solved independent of each other.

» Scheduling subproblem

max ~v'c  subject to constraint (8)
c>

» Joint sensing fraction allocation and routing

subproblem
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Subject to: constraints (2), (3), (4) and Y > 0,d € [0, 1]¥V

« The solution to the above problem is as follows
/-1 e e e *
di(B,7) = [U (Bj- e +r 'Cﬁp(ﬁ,v))]

where ¢'? is the cost of least-cost path and is given as
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- Let p = [3, ]! denote the price vector. Then, the price vector can
be updated using the projected subgradient method as follows

p[m + 1] = [plm] — ¢ - g(p[m])]"

Proposition

The optimum values of problems P, and P, are equal.

Numerical evaluation
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Figure 4: Plot of dual objective achieved by the projected sub-gradient update.



