
Falcon A Graph Manipulation Language for Heterogeneous
systems
Unnikrishnan C, Department of CSA,IISc, email:- unni c@csa.iisc.ernet.in
Rupesh Nasre, Department of CSE, IIT Madras
Y N Srikant, Department of CSA,IISc

Abstract
Graph algorithms have been shown to possess enough parallelism to keep several computing resources busyeven hun-

dreds of cores on a GPU. Unfortunately, tuning their implementation for efficient execution on a particular hardware
configuration of heterogeneous systems consisting of multicore CPUs and GPUs is challenging, time consuming, and
error prone. To address these issues, we propose a domain-specific language (DSL),Falcon, for implementing graph
algorithms that (i) abstracts the hardware, (ii) provides constructs to write explicitly parallel programs at a higher level,
and (iii) can work with general algorithms that may change the graph structure (morph algorithms). We illustrate the usage
of our DSL to implement local computation algorithms (that do not change the graph structure) and morph algorithms
such as Delaunay mesh refinement, survey propagation, and dynamic SSSP on GPU and multicore CPUs. Using a set of
benchmark graphs, we illustrate that the generated code performs close to the state-of-the-art hand-tuned implementations.

Falcon- Introduction
1. i) extends C programming language.

ii) provides additional data types for Graph processing.
iii) constructs for writing explicitly parallel graph algorithms.

2. Support for heterogeneous backends(CPU and GPU).
3. Supports parallel execution of different algorithms on multiple devices.
4. Supports partitioning of Graph objects and execution of a single algorithm using multiple devices. Used

when graph object does not fit in a single device. Supports mutation of Graph object.
5. Allows viewing Graph in different way(say collection of triangles).

Compiler Overview

Data Types and Iterators
Data Type Iterator Description
Graph points iterate over all points in graph
Graph edges iterate over all edges in graph
Graph pptyname iterate over all elements in new ppty.
Point nbrs iterate over all neighboring points
Point outnbrs iterate over dst point of outgoing edges (Directed Graph)
Edge nbrs iterate over neighbor edges
Set item iterate over all items in Set
Collection item iterate over all items in Collection

Table 1: Iterators for foreach(parallelization) statement in Falcon

Sample Falcon DSL codes

a)Multi-GPU SSSP and BFS

1 int <GPU>changed;
2 SSSPBFS(char *name) { //begin SSSPBFS
3 Graph hgraph;//Graph object on CPU
4 hgraph.addPointProperty(dist,int);
5 hgraph.addProperty(changed,int);
6 hgraph.getType() <GPU>graph0;//Graph on GPU0
7 hgraph.getType() <GPU>graph1;//Graph on GPU1
8 hgraph.addPointProperty(dist1,int);
9 hgraph.read(name);//read Graph from file to CPU

10 graph0=hgraph;//copy entire Graph to GPU0
11 graph1=hgraph;//copy entire Graph to GPU1
12 foreach(t In graph0.points)t.dist=1234567890;
13 foreach(t In graph1.points)t.dist=1234567890;
14 graph0.points[0].dist=0;
15 graph1.points[0].dist=0;

16 parallel sections { //do in parallel
17 section {//compute BFS on GPU1
18 while(1){
19 graph1.changed[0]=0;
20 foreach(t In graph1.points)BFS(t,graph1);
21 if(graph1.changed[0]==0) break;
22 }
23 }//end section BFS
24 section {//compute SSSP on GPU0
25 while(1){
26 graph0.changed[0]=0;
27 foreach(t In graph0.points)SSSP(t,graph0);
28 if(graph0.changed[0]==0) break;
29 }
30 }//end Section SSSP
31 }//end Sections
32 }//end SSSPBFS

b) Heterogeneous Execution(CPU and GPUs)

1 fun1(Point ori, Point incom){
2 if(orig.dist >incom.dist)
3 orig.dist=incom.dist
4 }
5 relaxgraph(Point p, HGraph hgraph){
6 foreach(t in p.outnbrs)
7 MIN(t.dist,p.dist+hgraph.getWeight(p,t),

hgraph.changed[0]);
8 }
9 main(int argc, char *argv[]){

10 HGraph hgraph;
11 hgraph.addPointProperty(dist, int);
12 hgraph.addProperty(changed, int);

13 hgraph.read(argv[1]);
14 hgraph.makePartition(1,1,ORDERED);
15 hgraph.updateFunction(fun1);
16 foreach(t In hgraph.points) t.dist=1234567890;
17 hgraph.points[0].dist=0;
18 while(1){
19 hgraph.changed[0]=0;
20 foreach(t In hgraph.points)relaxgraph(t,hgraph);
21 if(hgraph.changed[0]==0)break;
22 hgraph.updatePartition();
23 }
24 for(int i = 0;i <hgraph.npoints; i++)
25 printf(“%d”, hgraph.points[i].dist); }//end main

Results
1. Using Falcon compiler we wrote algorithms like BFS, SSSP and Boruvka’s-MST.
2. We wrote dynamic algorithms like Survey Propagation(SP), Delaunay Mesh refinement(DMR) and

Dynamic-SSSP in Falcon.
3. Performance of Falcon codes were compared with

i) LonestarGPU-(ISS group at the University of Texas at Austin)
ii) Galois- (ISS group at the University of Texas at Austin)
iii)Green-Marl- DSL (PP Laboratory, Stanford University)
iv)Totem(NetSysLab, University of British Columbia)

4. Totem- for comparing Performance on CPU, GPU and heterogeneous execution.
5. Galois and Green-Marl for comparing Performance on CPU.
6. LonestarGPU for comparing Performance on GPU.
7. We were able to get performance close to and some times better than above systems.
8. Tested on 12-core CPU and 4-GPU machine(1 Kepler and 3 Tesla).

a) Speedup of SSSP over
LonestarGPU

b) Speedup of SSSP over Galois single

c) Falcon multi-GPU speedup
d)DMR speedup over LonestarGPU

Future works
•OpenCL extension and Support for CPU and GPU cluster.
•Automatic partitioning and removal of <GPU>tag.
• For queries email to unni c@csa.iisc.ernet.in.

Publications
[1] Unnikrishnan C , Rupesh Nasre and Y N Srikant. Falcon: A Graph Manipulation Language for
Heterogeneous Systems. ACM TACO, December 2015.

