Consistency of Spectral Algorithms for Hypergraphs under Planted Partition Model

Debarghya Ghoshdastidar (Ph.D. - 4th year) Advisor: Prof. Ambedkar Dukkipati

Department of Computer Science & Automation, Indian Institute of Science

Hypergraphs and Clustering

Circuit partitioning for VLSI design:

Spectral Hypergraph Partitioning

Subspace clustering and applications:

Group coplanar points

Motion segmentation

Consistency of Hypergraph Partitioning

Planted partition model (special case)

- m-uniform hypergraph on n nodes
- k unknown classes of equal size, $k = O\left[\frac{n^{1/4}}{\log n}\right]$
- Edge prob. within class = p (unknown)
- Edge prob. across classes = q < p (unknown)

Graphs (m = 2) – Spectral clustering

Extensively studied [Rohe et al '11; Lei & Rinaldo'15]
%error → 0 as n → ∞ (weak consistency)

No. of misclustered nodes =
$$O\left(\frac{n^{1/2}}{(\log n)^2}\right)$$

Algorithms studied in our works

HOSVD

- [Govindu '05]
- Based on tensor decomposition
- Applicable only for uniform hypergraphs

No. of misclustered vertices = $O\left[\frac{n^{(4-m)/2}}{(\log n)^{2m-1}}\right]$

TTM / TTM-ext proposed

- Maximizes hypergraph associativity
- Partitions uniform / non-uniform hypergraphs
- Unifies several higher order learning methods

No. of misclustered vertices = $O\left[\frac{n^{(3-m)/2}}{(\log n)^{2m-3}}\right]$

NH-Cut

[Bolla '93; Zhou et al '07]

- Minimizes hypergraph cut
- Can tackle non-uniform hypergraphs

No. of misclustered vertices = $O\left[\frac{n^{(3-m)/2}}{(\log n)^{2m-3}}\right]$

Tetris

proposed

- Computationally efficient variant of TTM
- Applicable only for weighted hypergraphs
- Partitions using only few sampled edges

Consistency for edge sampling ratio =
$$\Omega\left(\frac{n^{(1.5-m)/2}}{(\log n)^{2m-3}}\right)$$

• Retrieves graph results for m = 2; but for m > 2, error $\rightarrow 0$ as $n \rightarrow \infty$ (strong consistency)

Empirical Studies

Variation of error for HOSVD, TTM and NH-Cut with increase in n under planted partition model

Fractional error incurred by hypergraph partitioning algorithms in clustering noisy points from three intersecting lines when the cluster size n/k(horizontal), and the noise level (vertical) are varied

Algorithm	Mean eror $(\%)$	Time (sec)
k-means	19.58	0.03
k-flats	13.19	0.38
SSC	1.53	0.80
LRR	2.13	0.94
SSC-OMP	16.93	0.72
TSC	18.44	0.19
NSN+Spec	3.62	0.08
SCC	2.53	0.45
SGC	3.50	0.54
Tetris	1.31	0.50

Performance on 2 motion videos in Hopkins dataset

References

• M. Bolla. Discrete Mathematics 117(3). 1993. • V. M. Govindu. In *CVPR*. 2005. • D. Zhou, J. Huang & B. Schölkopf. In NIPS. 2007.

- K. Rohe, S. Chatterjee & B. Yu. Annals of Statistics 39(4). 2011.
- D. Ghoshdastidar and A. Dukkipati. In NIPS. 2014.
- J. Lei & A. Rinaldo. Annals of Statistics 43(1). 2015.

• D. Ghoshdastidar and A. Dukkipati. In *ICML*. 2015. • D. Ghoshdastidar and A. Dukkipati. Annals of Statistics (in press). arXiv: 1505.01582. • D. Ghoshdastidar and A. Dukkipati. Manuscript *submitted.* arXiv: 1602.06516.