Consistency of Spectral Algorithms for Hypergraphs under Planted Partition Model
 Debarghya Ghoshdastidar (Ph.D. - $4^{\text {th }}$ year)

Advisor: Prof. Ambedkar Dukkipati
Department of Computer Science \& Automation, Indian Institute of Science

Hypergraphs and Clustering

Circuit partitioning for VLSI design:

Subspace clustering and applications:

Group coplanar points

Motion segmentation

Spectral Hypergraph Partitioning

Consistency of Hypergraph Partitioning

Planted partition model (special case)

- m-uniform hypergraph on n nodes
- k unknown classes of equal size, $k=O\binom{n^{1 / 4}}{\log n}$
- Edge prob. within class $=p$ (unknown)
- Edge prob. across classes $=q<p$ (unknown)

Graphs ($m=2$) - Spectral clustering

- Extensively studied [Rohe et al '11; Lei \& Rinaldo'15]
- \%error $\rightarrow 0$ as $n \rightarrow \infty$ (weak consistency)

Algorithms studied in our works

HOSVD

- Based on tensor decomposition
- Applicable only for uniform hypergraphs

No. of misclustered vertices $=O\left(\frac{n^{(4-m) / 2}}{(\log n)^{2 m-1}}\right)$

TTM / TTM-ext

- Maximizes hypergraph associativity
- Partitions uniform / non-uniform hypergraphs
- Unifies several higher order learning methods

No. of misclustered vertices $=O\left(\frac{n^{(3-m) / 2}}{(\log n)^{2 m-3}}\right)$
[proposed]
[Govindu '05]

NH-Cut
[Bolla '93; Zhou et al '07]

- Minimizes hypergraph cut
- Can tackle non-uniform hypergraphs

No. of misclustered vertices $=O\left(\frac{n^{(3-m) / 2}}{(\log n)^{2 m-3}}\right)$

Tetris

- Computationally efficient variant of TTM
- Applicable only for weighted hypergraphs
- Partitions using only few sampled edges

Consistency for edge sampling ratio $=\Omega\left(\frac{n^{(1.5-m) / 2}}{(\log n)^{2 m-3}}\right)$

- Retrieves graph results for $m=2$; but for $m>2$, error $\rightarrow 0$ as $n \rightarrow \infty$ (strong consistency)

Empirical Studies

Variation of error for HOSVD, TTM and NH-Cut with increase in n under planted partition model

No. of misclustered nodes $=O\left(\frac{n^{1 / 2}}{(\log n)^{2}}\right)$

