
RLWS: A Reinforcement Learning Based GPU Warp Scheduler
Jayvant Anantpur, Nagendra G. D.

Shivaram Kalyankrishnan, R. Govindarajan

Problem:
• At each cycle, schedule a warp from a pool of ready warps (satisfying

Dependency and Resource Constraints)
• If no warp can be scheduled, the processor stalls
• Minimize Number of Stalls

• Code is executed on
the GPU through
Kernel calls

• Kernel calls specify
execution
configuration called
Grid

• Grid specifies
number of Thread
Blocks (TB) and size
of a TB

• Threads of a TB
partitioned into
groups of threads
called Warps

• Select a warp from a pool of ready warps
• Max pool size = 24, but ready warps may be fewer (due to

dependence and resource constraints)
• 1 Instruction from a ready warp issued every cycle
• If no ready warp, then processor stalls
• Decision to be made every cycle
• Selecting a warp in each cycle, depends on the next instruction

to be executed in the ready warps
• 3 different types of instruction pipelines

• Memory (latency 300+ cycles for global mem)

• Special Function (Latency ~20 – 100 cycles)

• ALU (~10 cycles)

• Objective: Reduce the total runtime.

Why RL based Warp Scheduler
 Different warps (both within a TB and across TBs) execute the

same code, i.e., same sequence of instructions
 Except for data dependent execution paths

 SMs have seen execution of past TB
 Each SM can hold only a few resident TBs, and new TBs come

in the place of old (completed) TBs
 Intelligent scheduling needed to reduce stalls!

 Need to hide long memory stalls of one warp with useful
work from other warps!

State
• Total 33 Variables
• 10 binary – true/false values
• 23 variables can take multiple

values
• Value range is divided into

buckets
• Uniform/Non-uniform bucket

sizes
• Increasing/Decreasing bucket

sizes
• Boundary values (overlapping

buckets)
• Number of ready warps of Various

instruction types
• Various memory related statistics
• Warp synchronization state
• Number of stalled warps due to

various stall reasons

Actions
• Select a type of command to execute

• MEM, SFU, SP, NOP
• Select a type of TB

• ANY_TB, FASTEST_TB, SLOWEST_TB,
FINISH_TB, BARRIER_TB

• Hybrid scheduler with two agents

Rewards
• 1 if a warp is scheduled and 0 if none
• 1/-1
• Differential reward/penalties:

• Reward = 3/2/1, 5/3/1, 10/5/1, 16/8/2
depending on the cmd type

• Penalty = -2/-1/0, -4/-2/0, -10/-5/-1, -16/-8/-2
depending on the type of stall

 Q Value Table and Update Function
 Q value table – index computed using

state and action values
 XOR of lower log2(QtableSize) bits

with upper bits
 Update function (SARSA)

 Q  (1 – ) * Q +  * (R +  * Qn);

 Same Q value table for both Warp
Schedulers on an SM

 Various Q value table sizes from 256 to 1
million

 RL and Other Parameters
 ALPHA (Learning Rate)

 (0.5/0.6/0.7/0.8/0.9) and reduced gradually
 (0.01/0.03/0.05/0.07/0.09) fixed

 EXPL (Exploration)
 (0.08/0.12/0.16/0.20) and reduced gradually
 (0.01/0.03/0.05/0.07/0.09) fixed

 GAMMA (Discount Factor)
 0.95-0.99 and 0.999

• Ordering of warps with the same action
• LRR, GTO, YOUNGEST,

• Number of consecutive no ops
• Stall as a possible action even when there are

ready warps
• Number of consecutive no ops: 1, 2, 4, 8

• Frequency of selecting action
• Every 1/2/4/8/16 cycles

Genetic Algorithm
 Very large design space
 To select state variables and their

granularity (number of discrete values)
 To select RL and other parameters
 Number of solutions per generation = 100
 First generation solutions randomly

chosen
 Each solution is run on the RL

implementation
 Fitness value = Geometric mean of perf

improvement over GTO (kernel times)

 Next generation selection:
 90 solutions generated using previous

generation solutions using crossover
and mutation

 Parent solutions selected using
Roulette wheel method

 Every 10th generation introduces best
10 solutions seen so far

 Other generations introduce 10
random solutions

Experimental Evaluation
• GPGPU-SIM to simulate CUDA

benchmarks
• CUDA 4.2
• NVIDIA Fermi GPU architecture
• Benchmarks from GPGPU-SIM, Parboil,

CUDA SDK and Rodinia benchmark suites

Results
• Used the best 10 RL configurations

from GA
• Used 15 kernels for learning the

above configurations
• Ran 59 kernels and compared the

speedup (over existing warp
schedulers)

• Best RL Configuration gives
• 5 % improvement over LRR
• 7 % improvement over TL
• 1 % slowdown w.r.t GTO
• Best on 17 and second best on 30

kernels

RLWS Rank RLWS_LRR RLWS_GTO RLWS_TL Kernels

1 1.09 1.02 1.08 17

2 1.07 0.98 1.10 30

3 0.96 0.98 0.98 7

4 0.99 1.00 0.99 5

