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Problem: 
• At each cycle, schedule a warp  from a pool of ready warps (satisfying 

Dependency and Resource Constraints) 
• If no warp can be scheduled, the processor stalls 
• Minimize Number of Stalls 

• Code is executed on 
the GPU through 
Kernel calls 

• Kernel calls specify 
execution 
configuration called 
Grid 

• Grid specifies 
number of Thread 
Blocks  (TB) and size 
of a TB 

• Threads of a TB 
partitioned into 
groups of threads 
called Warps 

 

• Select a warp from a pool of ready warps 
• Max pool size = 24, but ready warps may be fewer (due to 

dependence and resource constraints) 
• 1 Instruction from a ready warp issued every cycle 
• If no ready warp, then processor stalls 
• Decision to be made every cycle 
• Selecting a warp in each cycle, depends on the next instruction 

to be executed in the ready warps 
• 3 different types of instruction pipelines 

• Memory (latency 300+ cycles for global mem) 

• Special Function (Latency ~20 – 100 cycles) 

• ALU  ( ~10 cycles) 

• Objective: Reduce the total runtime. 

Why RL based Warp Scheduler 
 Different warps (both within a TB and across TBs)  execute the 

same code, i.e., same sequence of instructions    
 Except for data dependent execution paths  

 SMs have seen execution of past TB 
 Each SM can hold only a few resident TBs, and new TBs come 

in the place of old (completed) TBs    
 Intelligent scheduling needed to reduce stalls! 

 Need to hide long memory stalls of one warp with useful 
work from other warps! 

State 
• Total 33 Variables 
• 10 binary – true/false values 
• 23 variables can take multiple 

values 
• Value range is divided into 

buckets 
• Uniform/Non-uniform bucket 

sizes 
• Increasing/Decreasing bucket 

sizes 
• Boundary values (overlapping 

buckets) 
• Number of ready warps of Various 

instruction types 
• Various memory related statistics 
• Warp synchronization state 
• Number of stalled warps due to 

various stall reasons 

Actions 
• Select a type of command to execute 

• MEM, SFU, SP, NOP 
• Select a type of TB 

• ANY_TB, FASTEST_TB, SLOWEST_TB, 
FINISH_TB, BARRIER_TB 

• Hybrid scheduler with two agents 

 

Rewards 
• 1 if a warp is scheduled and 0 if none 
• 1/-1 
• Differential reward/penalties: 

• Reward = 3/2/1, 5/3/1, 10/5/1, 16/8/2 
depending on the cmd type 

• Penalty = -2/-1/0, -4/-2/0, -10/-5/-1, -16/-8/-2 
depending on the type of stall 

 Q Value Table and Update Function 
 Q value table – index computed using 

state and action values 
 XOR of lower log2(QtableSize) bits 

with upper bits 
 Update function (SARSA) 

 Q   (1 – ) * Q +   * (R +  * Qn); 

 Same Q value table for both Warp 
Schedulers on an SM 

 Various Q value table sizes from 256 to 1 
million 

 RL and Other Parameters 
 ALPHA (Learning Rate) 

 (0.5/0.6/0.7/0.8/0.9) and reduced gradually 
 (0.01/0.03/0.05/0.07/0.09) fixed 

 EXPL (Exploration) 
 (0.08/0.12/0.16/0.20) and reduced gradually 
 (0.01/0.03/0.05/0.07/0.09) fixed 

 GAMMA (Discount Factor) 
 0.95-0.99 and 0.999 

• Ordering of warps with the same action 
• LRR, GTO, YOUNGEST,  

• Number of consecutive no ops 
• Stall as a possible action even when there are 

ready warps 
• Number of consecutive no ops: 1, 2, 4, 8  

• Frequency of selecting action 
• Every 1/2/4/8/16 cycles 

Genetic Algorithm 
 Very large design space 
 To select state variables and their 

granularity (number of discrete values) 
 To select RL and other parameters 
 Number of solutions per generation = 100 
 First generation solutions randomly 

chosen 
 Each solution is run on the RL 

implementation 
 Fitness value = Geometric mean of perf 

improvement over GTO (kernel times) 

 Next generation selection: 
 90 solutions generated using previous 

generation solutions using crossover 
and mutation 

 Parent solutions selected using 
Roulette wheel method  

 Every 10th generation introduces best 
10 solutions seen so far 

 Other generations introduce 10 
random solutions 

 

Experimental Evaluation 
• GPGPU-SIM to simulate CUDA 

benchmarks 
• CUDA 4.2  
• NVIDIA Fermi GPU architecture 
• Benchmarks from GPGPU-SIM, Parboil, 

CUDA SDK and Rodinia benchmark suites 

Results 
• Used the best 10 RL configurations 

from GA 
• Used 15 kernels for learning the 

above configurations 
• Ran 59 kernels and compared the 

speedup (over existing warp 
schedulers) 

• Best RL Configuration gives 
• 5 % improvement over LRR  
• 7 % improvement over TL 
• 1 % slowdown w.r.t  GTO 
• Best on 17 and second best on 30 

kernels 

RLWS Rank RLWS_LRR RLWS_GTO RLWS_TL  Kernels 

1 1.09 1.02 1.08 17 

2 1.07 0.98 1.10 30 

3 0.96 0.98 0.98 7 

4 0.99 1.00 0.99 5 


