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Problem: 
• At each cycle, schedule a warp  from a pool of ready warps (satisfying 

Dependency and Resource Constraints) 
• If no warp can be scheduled, the processor stalls 
• Minimize Number of Stalls 

• Code is executed on 
the GPU through 
Kernel calls 

• Kernel calls specify 
execution 
configuration called 
Grid 

• Grid specifies 
number of Thread 
Blocks  (TB) and size 
of a TB 

• Threads of a TB 
partitioned into 
groups of threads 
called Warps 

 

• Select a warp from a pool of ready warps 
• Max pool size = 24, but ready warps may be fewer (due to 

dependence and resource constraints) 
• 1 Instruction from a ready warp issued every cycle 
• If no ready warp, then processor stalls 
• Decision to be made every cycle 
• Selecting a warp in each cycle, depends on the next instruction 

to be executed in the ready warps 
• 3 different types of instruction pipelines 

• Memory (latency 300+ cycles for global mem) 

• Special Function (Latency ~20 – 100 cycles) 

• ALU  ( ~10 cycles) 

• Objective: Reduce the total runtime. 

Why RL based Warp Scheduler 
 Different warps (both within a TB and across TBs)  execute the 

same code, i.e., same sequence of instructions    
 Except for data dependent execution paths  

 SMs have seen execution of past TB 
 Each SM can hold only a few resident TBs, and new TBs come 

in the place of old (completed) TBs    
 Intelligent scheduling needed to reduce stalls! 

 Need to hide long memory stalls of one warp with useful 
work from other warps! 

State 
• Total 33 Variables 
• 10 binary – true/false values 
• 23 variables can take multiple 

values 
• Value range is divided into 

buckets 
• Uniform/Non-uniform bucket 

sizes 
• Increasing/Decreasing bucket 

sizes 
• Boundary values (overlapping 

buckets) 
• Number of ready warps of Various 

instruction types 
• Various memory related statistics 
• Warp synchronization state 
• Number of stalled warps due to 

various stall reasons 

Actions 
• Select a type of command to execute 

• MEM, SFU, SP, NOP 
• Select a type of TB 

• ANY_TB, FASTEST_TB, SLOWEST_TB, 
FINISH_TB, BARRIER_TB 

• Hybrid scheduler with two agents 

 

Rewards 
• 1 if a warp is scheduled and 0 if none 
• 1/-1 
• Differential reward/penalties: 

• Reward = 3/2/1, 5/3/1, 10/5/1, 16/8/2 
depending on the cmd type 

• Penalty = -2/-1/0, -4/-2/0, -10/-5/-1, -16/-8/-2 
depending on the type of stall 

 Q Value Table and Update Function 
 Q value table – index computed using 

state and action values 
 XOR of lower log2(QtableSize) bits 

with upper bits 
 Update function (SARSA) 

 Q   (1 – ) * Q +   * (R +  * Qn); 

 Same Q value table for both Warp 
Schedulers on an SM 

 Various Q value table sizes from 256 to 1 
million 

 RL and Other Parameters 
 ALPHA (Learning Rate) 

 (0.5/0.6/0.7/0.8/0.9) and reduced gradually 
 (0.01/0.03/0.05/0.07/0.09) fixed 

 EXPL (Exploration) 
 (0.08/0.12/0.16/0.20) and reduced gradually 
 (0.01/0.03/0.05/0.07/0.09) fixed 

 GAMMA (Discount Factor) 
 0.95-0.99 and 0.999 

• Ordering of warps with the same action 
• LRR, GTO, YOUNGEST,  

• Number of consecutive no ops 
• Stall as a possible action even when there are 

ready warps 
• Number of consecutive no ops: 1, 2, 4, 8  

• Frequency of selecting action 
• Every 1/2/4/8/16 cycles 

Genetic Algorithm 
 Very large design space 
 To select state variables and their 

granularity (number of discrete values) 
 To select RL and other parameters 
 Number of solutions per generation = 100 
 First generation solutions randomly 

chosen 
 Each solution is run on the RL 

implementation 
 Fitness value = Geometric mean of perf 

improvement over GTO (kernel times) 

 Next generation selection: 
 90 solutions generated using previous 

generation solutions using crossover 
and mutation 

 Parent solutions selected using 
Roulette wheel method  

 Every 10th generation introduces best 
10 solutions seen so far 

 Other generations introduce 10 
random solutions 

 

Experimental Evaluation 
• GPGPU-SIM to simulate CUDA 

benchmarks 
• CUDA 4.2  
• NVIDIA Fermi GPU architecture 
• Benchmarks from GPGPU-SIM, Parboil, 

CUDA SDK and Rodinia benchmark suites 

Results 
• Used the best 10 RL configurations 

from GA 
• Used 15 kernels for learning the 

above configurations 
• Ran 59 kernels and compared the 

speedup (over existing warp 
schedulers) 

• Best RL Configuration gives 
• 5 % improvement over LRR  
• 7 % improvement over TL 
• 1 % slowdown w.r.t  GTO 
• Best on 17 and second best on 30 

kernels 

RLWS Rank RLWS_LRR RLWS_GTO RLWS_TL  Kernels 

1 1.09 1.02 1.08 17 

2 1.07 0.98 1.10 30 

3 0.96 0.98 0.98 7 

4 0.99 1.00 0.99 5 


