
RLWS: A Reinforcement Learning Based GPU Warp Scheduler
Jayvant Anantpur, Nagendra G. D.

Shivaram Kalyankrishnan, R. Govindarajan

Problem:
• At each cycle, schedule a warp from a pool of ready warps (satisfying

Dependency and Resource Constraints)
• If no warp can be scheduled, the processor stalls
• Minimize Number of Stalls

• Code is executed on
the GPU through
Kernel calls

• Kernel calls specify
execution
configuration called
Grid

• Grid specifies
number of Thread
Blocks (TB) and size
of a TB

• Threads of a TB
partitioned into
groups of threads
called Warps

• Select a warp from a pool of ready warps
• Max pool size = 24, but ready warps may be fewer (due to

dependence and resource constraints)
• 1 Instruction from a ready warp issued every cycle
• If no ready warp, then processor stalls
• Decision to be made every cycle
• Selecting a warp in each cycle, depends on the next instruction

to be executed in the ready warps
• 3 different types of instruction pipelines

• Memory (latency 300+ cycles for global mem)

• Special Function (Latency ~20 – 100 cycles)

• ALU (~10 cycles)

• Objective: Reduce the total runtime.

Why RL based Warp Scheduler
 Different warps (both within a TB and across TBs) execute the

same code, i.e., same sequence of instructions
 Except for data dependent execution paths

 SMs have seen execution of past TB
 Each SM can hold only a few resident TBs, and new TBs come

in the place of old (completed) TBs
 Intelligent scheduling needed to reduce stalls!

 Need to hide long memory stalls of one warp with useful
work from other warps!

State
• Total 33 Variables
• 10 binary – true/false values
• 23 variables can take multiple

values
• Value range is divided into

buckets
• Uniform/Non-uniform bucket

sizes
• Increasing/Decreasing bucket

sizes
• Boundary values (overlapping

buckets)
• Number of ready warps of Various

instruction types
• Various memory related statistics
• Warp synchronization state
• Number of stalled warps due to

various stall reasons

Actions
• Select a type of command to execute

• MEM, SFU, SP, NOP
• Select a type of TB

• ANY_TB, FASTEST_TB, SLOWEST_TB,
FINISH_TB, BARRIER_TB

• Hybrid scheduler with two agents

Rewards
• 1 if a warp is scheduled and 0 if none
• 1/-1
• Differential reward/penalties:

• Reward = 3/2/1, 5/3/1, 10/5/1, 16/8/2
depending on the cmd type

• Penalty = -2/-1/0, -4/-2/0, -10/-5/-1, -16/-8/-2
depending on the type of stall

 Q Value Table and Update Function
 Q value table – index computed using

state and action values
 XOR of lower log2(QtableSize) bits

with upper bits
 Update function (SARSA)

 Q (1 –) * Q + * (R + * Qn);

 Same Q value table for both Warp
Schedulers on an SM

 Various Q value table sizes from 256 to 1
million

 RL and Other Parameters
 ALPHA (Learning Rate)

 (0.5/0.6/0.7/0.8/0.9) and reduced gradually
 (0.01/0.03/0.05/0.07/0.09) fixed

 EXPL (Exploration)
 (0.08/0.12/0.16/0.20) and reduced gradually
 (0.01/0.03/0.05/0.07/0.09) fixed

 GAMMA (Discount Factor)
 0.95-0.99 and 0.999

• Ordering of warps with the same action
• LRR, GTO, YOUNGEST,

• Number of consecutive no ops
• Stall as a possible action even when there are

ready warps
• Number of consecutive no ops: 1, 2, 4, 8

• Frequency of selecting action
• Every 1/2/4/8/16 cycles

Genetic Algorithm
 Very large design space
 To select state variables and their

granularity (number of discrete values)
 To select RL and other parameters
 Number of solutions per generation = 100
 First generation solutions randomly

chosen
 Each solution is run on the RL

implementation
 Fitness value = Geometric mean of perf

improvement over GTO (kernel times)

 Next generation selection:
 90 solutions generated using previous

generation solutions using crossover
and mutation

 Parent solutions selected using
Roulette wheel method

 Every 10th generation introduces best
10 solutions seen so far

 Other generations introduce 10
random solutions

Experimental Evaluation
• GPGPU-SIM to simulate CUDA

benchmarks
• CUDA 4.2
• NVIDIA Fermi GPU architecture
• Benchmarks from GPGPU-SIM, Parboil,

CUDA SDK and Rodinia benchmark suites

Results
• Used the best 10 RL configurations

from GA
• Used 15 kernels for learning the

above configurations
• Ran 59 kernels and compared the

speedup (over existing warp
schedulers)

• Best RL Configuration gives
• 5 % improvement over LRR
• 7 % improvement over TL
• 1 % slowdown w.r.t GTO
• Best on 17 and second best on 30

kernels

RLWS Rank RLWS_LRR RLWS_GTO RLWS_TL Kernels

1 1.09 1.02 1.08 17

2 1.07 0.98 1.10 30

3 0.96 0.98 0.98 7

4 0.99 1.00 0.99 5

