
PolyMage: A Domain-Specific Language and Compiler for
Image Processing Pipelines and Multigrid Methods

Vinay Vasista Uday Kumar Reddy B Ravi Teja Mullapudi

Indian Institute of Science

PolyMage: A Domain-Specific Language and Compiler for
Image Processing Pipelines and Multigrid Methods

Vinay Vasista Uday Kumar Reddy B Ravi Teja Mullapudi

Indian Institute of Science

Image Processing Pipelines

Where are image processing pipelines
used?
• Every image uploaded to social networks like

Google and Facebook is processed by a pipeline

• Run on every camera-enabled device

• Important workloads both at data center and
mobile device scale

Google+ Auto Enhance

•Not just limited to image enhancement
Medical Imaging, Computer Vision ...

Fundus of the Eye (c) Ignis, CC By A-SA 3.0 Face detection (c) Beatrice Murch, CC By 3.0

Manually optimizing pipelines for modern
architectures is hard
Memory hierarchy, Parallelism

Goal: Performance levels of manual tuning
in a fully automatic fashion

Approach: Domain-specific language and
compiler to generate an optimized pipeline
implementation

High-level Language to Describe Pipelines
Key abstractions: Image as a function on an integer grid;

Pipeline as a graph of interconnected stages

R, C = Parameter(Int), Parameter(Int)

thresh , w = Parameter(Float), Parameter(Float)

x, y, c = Variable (), Variable (), Variable ()

I = Image(Float , [3, R+4, C+4])

cr = Interval (0, 2, 1)

xr , xc = Interval (2, R+1, 1), Interval (0, C+3, 1)

yr , yc = Interval (2, R+1, 1), Interval (2, C+1, 1)

blurx = Function(varDom = ([c, x, y], [cr, xr , xc]), Float)

blurx.defn = [Stenci l (I(c, x, y), 1.0/16 ,

[[1, 4, 6, 4, 1]])]

blury = Function(varDom = ([c, x, y], [cr, yr , yc]), Float)

blury.defn = [Stenci l (blurx(c, x, y), 1.0/16 ,

[[1], [4], [6], [4], [1]]])]

sharpen = Function(varDom = ([c, x, y], [cr, yr , yc]), Float)

sharpen.defn = [I(c, x, y) * (1 + w) - blury(c, x, y) * w]

masked = Function(varDom = ([c, x, y], [cr, yr , yc]), Float)

diff = Abs((I(c, x, y) - blury(c, x, y)))

cond = Condition(diff , ‘<’, thresh)

masked.definition = Select(cond , I(c, x, y), sharpen(c, x, y))

PolyMage code for Unsharp Mask pipeline

(c)Bernie Saunders, CC BY-NC-ND 3.0

• Capture common image processing operations:
point-wise, stencil, sampling, histogram

• Enable compiler analysis and transformation

Compiler Phases

DSL Spec
Build stage graph
Static bounds check
Inlining

Alignment
Scaling
Grouping

Polyhedral
representation
(initial schedule)

Schedule transform
- Fusion - Tiling
- multidim parallelism

Storage Optimizations
- scratchpad buffers
- reuse allocs

Code generation

Pooled memalloc

Optimizing for Parallelism, Locality and Storage

x

f1

f2

fout

Overlapped Split Parallelogram

Function Schedule Dependence Vectors

fout(x) = f2(x− 1)· f2(x + 1) (x)→ (2, x) (1, 1), (1,−1)

f2(x) = f1(x− 1) + f1(x + 1) (x)→ (1, x) (1, 1), (1,−1)

f1(x) = fin(x) (x)→ (0, x)

Overlapped Split Parallelogram

Parallelism X X ×

Locality X X X

Redundancy X × ×

Polyhedral representation

• Geometric view of computation and schedules

• Effective representation for dependence analysis,
schedule transformation and code generation

• Naive schedules for computing function values
often yield sub-optimal performance

• Tiled execution to exploit parallelism, locality,
and reduce storage

The figure shown above depicts the producer-consumer relationships between the values of functions f1, f2 and fout defined in the table. Live-out
points are encircled in red. Characteristics of each of the tiling techniques are shown in the right table.

Despite the redundant computation introduced, overlapped tiling is beneficial for image processing pipelines since
it improves locality and parallelism while allowing for excellent storage optimization.

Tiling for Heterogeneous Functions

x

h

o

τ

f

f↓1

f↓2

f↑

fout

Function Schedule

fout(x) = f↑(x/2) (x)→ (4, x)

f↑(x) = f↓2(x/2)· f↓2(x/2 + 1) (x)→ (3, 2x)

f↓2(x) = f↓1(2x− 1)· f↓1(2x + 1) (x)→ (2, 4x)

f↓1(x) = f (2x− 1)· f (2x + 1)· f (2x) (x)→ (1, 2x)

f (x) = fin(x) (x)→ (0, x)

• Prior approaches for overlapped tiling only target homogeneous time-iterated stencil
computations. Stages in image processing pipelines exhibit heterogeneous dependence
patterns and are not limited to simple stencils

• Function schedules are scaled and aligned to make dependences short. The overlapped
tile shape is determined by analyzing dependence vectors between stages.

• O is the amount of overlap, h is the tile
height, and τ is the tile size

• Extended region shows overlap with an
over-approximation for tile shape

• Scratchpad allocations are shown as
rectangles within the tile

Fusing Pipeline Stages for Tiling

Image courtesy of Kyros Kutulakos

Figure shows Laplacian pyramid blending
pipeline with four pyramid levels. Inputs to the
pipeline are the top two images on the right, each
with one of the halves out of focus, and a mask
image M. The image at the bottom right is the
blended output where both halves of the image
are in focus.

Grouping

• Greedy iterative algorithm to choose a
grouping among an exponential num-
ber of valid groupings

• Groups only the stages which can be
overlap tiled, i.e., stages whose sched-
ules can be scaled and aligned while
keeping dependences short

• Fuses stages till the overlap relative to
input tile size is less than the specified
overlap threshold

Autotuning for the Best Grouping

200 250 300 350 400 450
20

40

60

Execution time on 1 core (ms)

E
x
ec
u
ti
on

ti
m
e
on

16
co
re
s
(m

s)

100 120 140 160 180 200 220

20

30

40

Execution time on 1 core (ms)

E
x
ec
u
ti
on

ti
m
e
on

16
co
re
s
(m

s)

• Grouping heuristic takes tile sizes, overlap threshold as input, and determines
a grouping structure

• The ideal grouping depends on pipeline characteristics and target machine

• Our model-driven approach narrows down the search space to a small set of
tile size and overlap threshold parameters

The scatter plots show the execution times (y-axis: on 16 cores, x-axis: on 1 core) in milliseconds
for configurations explored by the autotuner for two benchmarks.

Pyramid Blending Multiscale Interpolation

Experimental Results

Unsharp
Mask

Bilateral
Grid

Harris
Corner

Camera
Pipeline

Pyramid
Blending

Multiscale
Interpolate

Local
Laplacian

0

2

4

1.63

0.89

2.59

1.04

4.61

1.81
1.54

S
p
ee
d
u
p
ov
er

H
-t
u
n
ed

H
al
id
e
sc
h
ed

u
le
s
(1
6
co
re
s)

16 threads

Unsharp
Mask

Bilateral
Grid

Harris
Corner

Camera
Pipeline

Pyramid
Blending

Multiscale
Interpolate

Local
Laplacian

0

10

20

30

1.39 1.09
2.61

10.05

27.61

12.72
9.41

S
p
ee
d
u
p
ov
er

H
-o

p
e
n

H
al
id
e
sc
h
ed

u
le
s
(1
6
co
re
s)

16 threads

Harris
Corner

Pyramid
Blending

Multiscale
Interpolate

0

1

2

3

1.4

2.16

1.75

S
p
ee
d
u
p
o
f
H
-m

a
tc
h
ed

ov
er

H
-t
u
n
ed

sc
h
ed

u
le
s
(1
6
co
re
s)

16 threads

• Seven image processing application benchmarks, which vary
widely in structure and complexity

• Comparison with Halide, a domain-specific language for image
processing pipelines

– H-tuned : schedule manually tuned for the target machine

– H-open: best schedule found by OpenTuner after 12 hours of
autotuning

– H-matched : expressed to closely match PolyMage generated
schedules

Target system: Intel Xeon E5-2680, dual socket NUMA (8 cores each), @2.7GHz, 32KB L1 and 512KB L2 cache/core, 20MB L3 shared
cache, 64 GB non-ECC RAM. Intel C/C++ compiler v14.0.1

Mean (geometric) speedup = 1.75×

Mean (geometric) speedup = 5.39×

PolyMage matched schedules outperform Halide tuned schedules

Conclusions

•Automatically generating image processing pipelines equaling or sur-
passing manual optimization is feasible

– Choosing the right abstractions

– Using a combination of model-driven approach and autotuning

•What can be improved?

– Grouping heuristic can be more sophisticated

– Vectorization for multiscale applications

•Going forward

– Tackle more patterns and domains

– Targeting GPUs and multicores in embedded systems

Acknowledgments

•Halide team, isl, islpy and cgen

• Intel Labs, Bangalore for donation of hardware and software

•Google, ACM SIGPLAN, IARCS for travel support

