
Efficient Compilation of Stream Programs
for Heterogeneous Architectures
A Model-Checking based Approach
Rajesh Kumar Thakur & Y. N. Srikant
Dept. of Computer Science and Automation, IISc Bangalore
rajesh@csa.iisc.ernet.in

Motivation
1. Large number of application fit to Stream Programming model.

(a) Multimedia, Graphics, Cryptography etc.
2. Stream programs can be represented as structured graphs, have regular and repeating computation,

with explicit communication.
3. Stream Program exposes data, task and pipeline parallelism.
4. Heterogeneous architectures are to become mainstream and hence it is challenging to obtain effi-

cient compilation and execution of programs onto these architectures.

Stream Programming Model
A stream graph G = {V,E}, where V = {v1, ..., vn} is the set of actors/filters, and E ⊆ V ×V is the
set of FIFO communication channels between actors.
A channel (vi, vj) ∈ E buffers tokens (data elements) which are passed from the output of vi to the
input of vj.
Synchronous dataflow (SDF) restricts the model by fixing the number of input and output tokens of a
filter vi.

Q S1

F3

S2

F1

F2

J2

F4

J1 T2

6

2

2

2

2

22

2

2 1

1

1

1

1

1

4
4

6

64

4

Q S1

F3

F12

F4

J1 T2

6

22

2

2 1
1

44

6

64 4

Figure 1: SDF Stream Graph and its Modified Graph

Compilation Flow for Stream Programs
Execute Profile and Configuration Selection

Generate Code
for Profiling

Profile Runs
Collecting

Execution Config.

Execution
Configuration

Selection

Fission and Processor Assignment

Generating
CTL Automata

Model Checking
Path Formulae

SWP Code Generation

Code
Generation

1 2

3

45

Stream
Program

C and
CUDA
code

1 2

3

4

6

Select Actors for Profiling. Profile Results (Computation and Communication time).

CPU and GPU Execution Configuration selection.

Automata modelling pipeline, data, and task parallelism.

Modulo Scheduling for Concerted Execution of Stream Program on CPU and GPU.

Modulo
Scheduling

6

5 Solving least cost path reachability problem (Schedule).

Figure 2: Compilation Flow

Building Computation Models from Stream Graph
Our compilation target is a heterogeneous combination of cores with different ISA(instruction Set
Architecture) and address space, including multicore CPUs and NVIDIA GPUs. Assuming two CPU
cores (M1 and M2) and one GPU G1 Here.

U U

QM1 Q’M1

Q == 1

cost += 6

Q = 0

S1 = 1

U U

S1M1 S1’M1

S1 == 1

cost += 6

S1 = 0

S2 = F3 =1

U U

S1M2 S1’M2

S1 == 1

cost += 6

S1 = 0

S2 = F3 =1

U U

S1G1 S1’G1

S1 == 1

cost += 6

S1 = 0

S2 = F3 =1

Modeling Data and Task Parallelism and Integrated Fission
Assuming two CPU cores (M1 and M2) and one GPU G1.

U

U

F12G1

F12’G1

F12

== 1

cost += c1

F12 = 0

J1 = 1

U

U

F3M1

F3’M1

F3

== 1

cost += c2

F3 = 0

t_tran = 1

U

U

F4M2

F4’M2

F4

== 1

cost += c3

F4 = 0

J1 = 1

U

channel1!
channel1?

channel2!

t_tran

== 1

cost =

max(c1,c2)

t_tran = 0

channel2?

Q

S1

F3

F12
2

J1 T

F12
1

F12
3

dup join

dup

join

F4
1

F4
3

F4
2

Figure 3: Task and Data Parallelism

U U

F41F42M1 F41F42’M1

F41F42

== 1
cost += c

F41F42 = 0

j1=1

U U

F41F42F43M2 F41F42F43’M2

F41F42F43

== 1

cost += c

F41F42F43 = 0

J1 = 1

Figure 4: Optimal data parallelism exploitation

State Space and Reachability Property
Reachability property E <> (FinalState and cost < ∞) is to be verified. A trace is then obtained
from UPPAAL model checker.

Publication
Published at 18th International Workshop on Software and Compilers for Embedded Systems
(SCOPES) 2015.

Processor, Stage Assignment and Modulo Scheduled Code Gener-
ation

S
1

F
3

F12

F4

J
1

T
Q

F12

M1

G1

M2

Processors

F
1
2

S
1

F
3

F
1
2

F
4

J
1

T
Q

DMA DMA

DMA DMA DMA

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Q

Q

Q

Q → S1

Q → S1

S1→F12
S1→F12

T
im

e

M1 G1 M2DMA1 DMA2

S1

F3

Q

S1

F3

F12 F12Q → S1

S1→F12

F3→F4

S1→F12

Q

S1

F3

F12Q → S1

S1→F12

F3→F4

S1→F12

F4→J1

F12→J1

Q

S1

F3

Q → S1

S1→F12

F3→F4

S1→F12

F4→J1

F12→J1

F4

F12

F4

F12

J

F12

T

Figure 5: Processor Assignment, Stage Assignment, Modulo Scheduled Execution

Experimental Evaluation
Benchmarks Actors

Total Stateful Peeking
Bit 82 0 0

BitR 452 2 0
CV 54 2 34

DCT 22 18 16
DES 375 180 1

FFT-C 26 14 0
FFT-F 99 0 0

FB 53 34 16
FM-R 67 23 22
MM 52 2 0

MPEG 39 7 0
TDE 55 27 2

Table 1: Characteristics of the Benchmarks

Benchmarks Makespan (ns)
MC-SWP Malik et.al. Udupa et.al.

Biti 72570 77202 84292
BitR 105262 116958 147102
CV 8587960 8853568 10373877
DCT 1524609 1621925 1787428
DES 371921 413246 464369
FFT-C 317839 327669 413723
FFT-F 394579 419765 454031
FB 636420 707133 801904
FM-R 199727 205905 222543
MM 1197292 1273715 1455675
MPEG 1675072 1861191 2033879
TDE 14065412 14500425 16111583

Table 2: Makespan

Performance Evaluation Results

Figure 6: Performance Evaluation on Multicore CPU
(Udupa et.al. vs MC-SWP)

Figure 7: Performance Evaluation on Multicore
CPU (Malik et.al. vs MC-SWP)

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

Bit	 BitR	 CV	 DCT	 DES	 FFT-‐C	 FFT-‐F	 FB	 FM-‐R	 MM	 MPEG	 TDE	

2	 Core	 Udupa	 et.al.	 4	 Core	 Udupa	 et.al.	 8	 Core	 Udupa	 et.al.	 2	 Core	 Malik	 et.al.	 4	 Core	 Malik	 et.al.	
8	 Core	 Malik	 et.al.	 2	 Core	 MC-‐SWP	 4	 Core	 MC-‐SWP	 8	 Core	 MC-‐SWP	

Figure 8: Performance Evaluation on Multicore CPU (ALL)

Figure 9: Performance
Evaluation on CPU (4 Cores) +
GPU)

Conclusions
•We present a model- checking based framework for statically scheduling stream programs on het-

erogenous architecture having both CPU and GPUs. (Our approach is the first which utilises model-
checking)

•We produce a schedule which provides an efficient mapping onto these architectures and fully
utilises the available resources.

•We use CUDA streams on NVIDIA GPUs, where the optimal number of streams is decided using
a profile-based approach.

•Our approach provides a speedup of upto 55.86X and a geometric mean speedup of 9.62X over a
single threaded CPU on StreamIt benchmarks.

Forthcoming Research
Scheduling programmable streams from imperative object-oriented programming languages onto
CPU and GPUs, without programmer’s intervention, preserving the execution semantics as specified
in the language specification onto heterogeneous architectures.

Acknowledgements
The authors would like to thank IMPECS for the support towards this project.

