

MOTIVATION FOR RELATIONAL CROWDSOURCING

- Knowledge Graphs (KGs) are multi-relational graphs connecting entities via relations.
- Automatic construction of KGs by reading the web and extracting facts, leads to inaccurate graphs with incorrect facts.

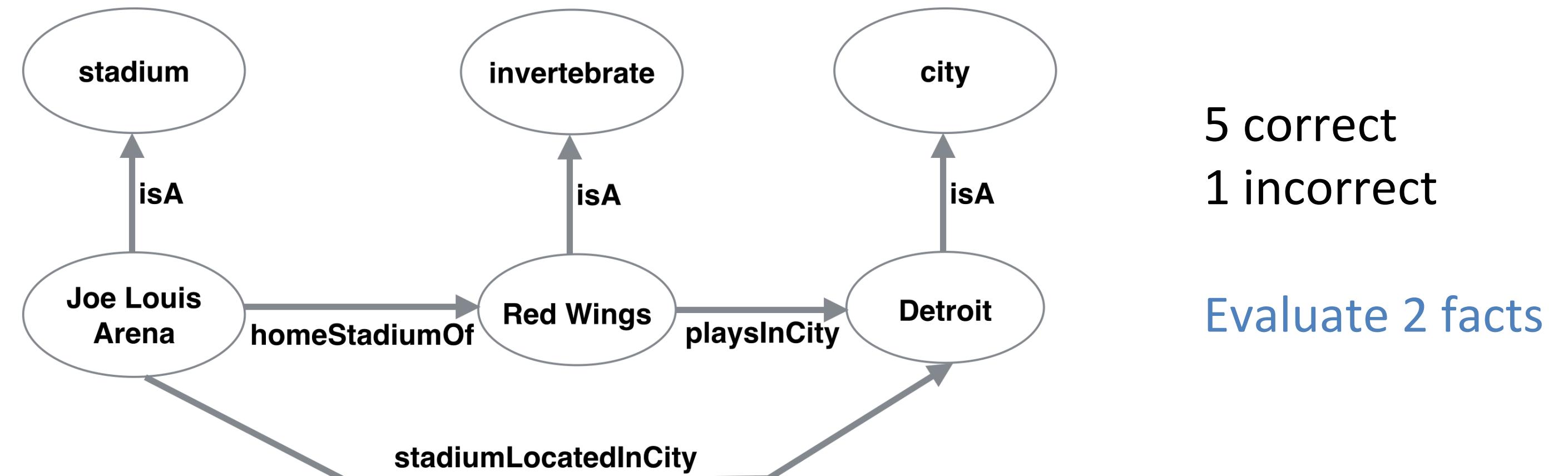
Importance of Accuracy

- Know strengths / weakness for targeted querying.
- Feedback helps in better construction.

How to estimate accuracy? Software Evaluation or Human Judgment

- Budget constraints of real money and human time.
- Generic crowdsourcing ignores structural information.

Idea: Exploit structural information to post fewer tasks and infer the rest.



Coupling Constraints

- Type consistency: $\text{homeStadiumOf}(X, Y) \rightarrow \text{stadium}(X) \wedge \text{sportsTeam}(Y)$
- Horn-Clause: $\text{homeStadiumOf}(X, Y) \wedge \text{playsInCity}(Y, Z) \rightarrow \text{stadiumLocatedIn}(X, Z)$

PROBLEM FORMALIZATION AND APPROACH

KG with n beliefs $\mathcal{H} = \{h_1, \dots, h_n\}$ and budget \mathbb{B} of to evaluate it.

Coupling constraints $\mathcal{C} = \{(\mathcal{C}_i, \theta_i)\}$ are relationship among tasks.

Inference algorithm uses constraints over already evaluated tasks $\mathcal{Q} \subseteq \mathcal{H}$ and deduces labels for inferable set $\mathcal{I}(G, \mathcal{Q}) \subseteq \mathcal{H}$.

$\Phi(\mathcal{Q})$ calculates the average accuracy of evaluated tasks.

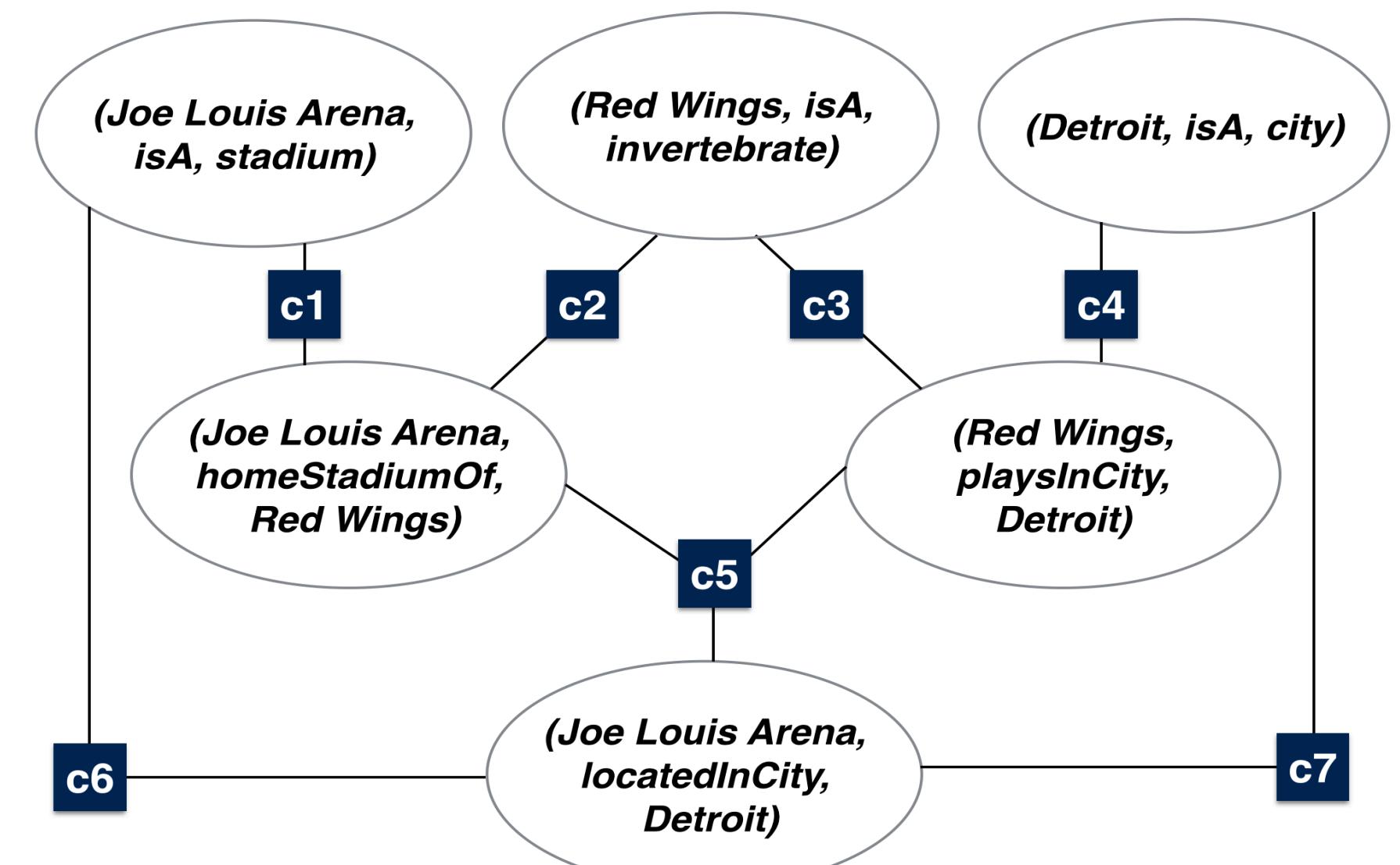
Maximize the size of inferable set, taking care of the budget.

$$\arg \max_{\mathcal{Q} \subseteq \mathcal{H}} |\mathcal{I}(G, \mathcal{Q})|, \text{ s.t. } \sum_{h \in \mathcal{Q}} c(h) \leq \mathbb{B} \quad (1)$$

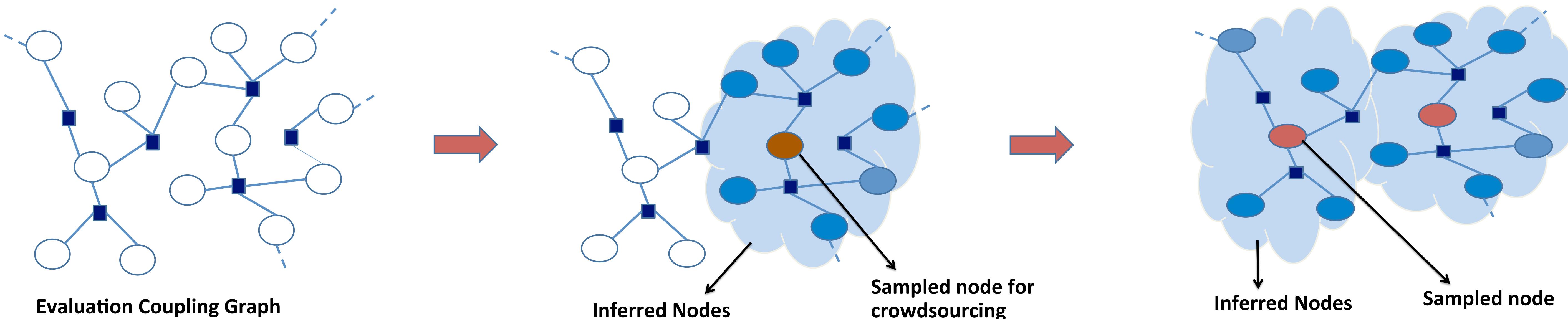
RelCrowd optimization is submodular and subset selection is NP-Hard.

Evaluation Coupling Graph (ECG)

- Bipartite factor graph
- Nodes for each constraint and task
- Edges between constraints and participating tasks



OVERVIEW OF CONTROL AND INFERENCE MECHANISM



METHOD

Inference Mechanism

Probabilistic Soft Logic (PSL) : Distribution over labels given by

$$\mathbb{P}\left(l(\mathcal{I}(G, \mathcal{Q}))\right) = \frac{1}{Z} \exp \left[- \sum_{j=1}^{|C|} \theta_j \psi_j(\mathcal{I}(G, \mathcal{Q})) \right]$$

Labels which satisfy more constraints are more probable.

Control Mechanism

Algorithm 1 KGEval: KG-Evaluation

```

1:  $G = \text{BUILDEC}(H, \mathcal{C})$ 
2:  $B_r = \mathbb{B}$ 
3:  $\mathcal{Q}_0 = \mathcal{S}$ 
4: while ( $B_r > 0$ ) do
5:    $h^* = \arg \max_{h \in \mathcal{H}} |\mathcal{I}(G, \mathcal{Q}_{t-1} \cup \{h\})|$ 
6:   CROWDEVALUATE( $h^*$ )
7:    $\mathcal{Q}_t = \mathcal{I}(G, \mathcal{Q}_{t-1} \cup \{h^*\})$ 
8:    $B_r = B_r - c(h^*)$ 
9:    $\mathcal{Q} = \mathcal{Q} \cup \mathcal{Q}_t$ 
10:  if  $\mathcal{Q} \equiv \mathcal{H}$  then
11:    EXIT
12:  end if
13: end while
14: return  $\frac{1}{|\mathcal{Q}|} \sum_{h \in \mathcal{Q}} l(h)$ 

```

\mathcal{H} : set of tasks
 \mathcal{C} : coupling constraints
 G : ECG
 \mathbb{B} : assigned budget
 B_r : residual budget
 \mathcal{Q} : evaluated tasks
 \mathcal{S} : seed set
 $c(h)$: cost function
 Φ : score aggregator

KEY RESULTS

Datasets: NELLsports and Yago2Sample KGs

Crowdsource from Amazon Mechanical Turk

Baselines: Random, Max-Degree, Independent Cascade, and RelCrowd

NELL sports dataset (\mathcal{H}_N)			
Method	$1 - \Delta \text{Acc}_{\text{Micro}}$	$1 - \Delta \text{Acc}_{\text{Macro}}$	# Queries
Random	0.987	0.9516	623
Max-Degree	0.971	0.9239	1370
Ind-Cascade	0.992	0.9026	232
RelCrowd	0.995	0.9641	140

- RelCrowd estimates are closest to gold accuracy and utilize minimum budget.
- Rate of coverage over Knowledge graph is fastest.

Effectiveness of Coupling Constraints:

More relational Couplings Constraints \rightarrow Better performance.

Constraint Set	Iterations	$1 - \Delta \text{Acc}_{\text{Micro}}$
\mathcal{C}	87	0.993
$\mathcal{C} - \mathcal{C}_{b3}$	209	0.991
$\mathcal{C} - \mathcal{C}_{b3} - \mathcal{C}_{b2}$	285	0.989

Future directions: Minimize regret incurred in terms of budget spent.

Model aggregation methods for noisier crowd responses.