Interference-Constrained Cooperative Relaying for Cognitive Radio

Priyanka Das and Neelesh B. Mehta Dept. of Electrical Communication Eng., IISc

Cognitive Radio (CR)

- Wireless spectrum is being unutilized or partially utilized
- CR enables reuse of already allocated spectrum
 - Solves spectrum shortage issue
- Types of users: Primary and secondary users

Mode of operation: Underlay CR

- Secondary users transmits simultaneously with primary users
- Interference caused to primary receiver must be constrained

Issue: Interference constraint limits secondary system performance

SEP Comparison and Benchmarking

- Proposed SEP-optimal rules outperform other existing schemes
- Having knowledge of direct SD link significantly improves SEP

Cooperative Relaying with Relay Selection in CR

Cooperative Relays

- Help to forward data
- Provide spatial diversity

Selecting the best relay

- Solves relay synchronization issue
- Spectrally efficient

• Focus:

- Whether to use a relay or only the direct S-to-D (SD) link.
- If a relay is selected then which relay?

Contributions

- Proposed optimal relay selection rules subject to average interference constraint in order to
 - Minimize average symbol error probability (SEP)
 - Maximize average data rate
- Analyzed average rate of the optimal rule
- Proposed and analyzed simpler, sub-optimal relay selection rules for minimizing SEP
- Performed asymptotic SEP and rate analysis for high and low signal-to-interference-plus-noise ratio (SINR)

Problem Statement: Rate-Optimal Relay Selection Rule

Find the optimal relay selection rule

- Maximize the average rate
- Average relay interference must be below a threshold, I_{avg}

Optimization Problem: $\max_{\phi} \ \mathbb{E}_{h_{SD},\mathbf{h}} \big[C \left(\gamma_{SD}, \gamma_{S\beta}, \gamma_{\beta D} \right) \big]$ s.t. $\mathbb{E}_{h_{SD},\mathbf{h}} \big[P_{\beta} |h_{\beta P}|^2 \big] \leq I_{\text{avg}}$

Proposed Solution:

Theorem

Let I_{un} is average interference by relay to P_{Rx} when system is unconstrained. The rate-optimal relay β^* is

 $\beta = \phi(h_{SD}, \mathbf{h}) \in \{0, 1, \dots, L\}$

$$\beta^* = \begin{cases} \operatorname{argmax}_{i \in \{0,1,\dots,L\}} \left\{ C\left(\gamma_{SD}, \gamma_{Si}, \gamma_{iD}\right) \right\}, & I_{un} \leq I_{avg} \\ \operatorname{argmax}_{i \in \{0,1,\dots,L\}} \left\{ C\left(\gamma_{SD}, \gamma_{Si}, \gamma_{iD}\right) - \lambda P_i |h_{iP}|^2 \right\}, & I_{un} > I_{avg} \end{cases}$$

• $\lambda > 0$ is chosen s.t. $\mathbb{E}_{h_{SD},\mathbf{h}}[P_{\beta^*}|h_{\beta^*P_{Bx}}|^2] = I_{avg}$

Rate Comparison and Benchmarking

Proposed rate-optimal rule outperforms all other existing schemes

Rate Gain Achieved Over Direct Transmission

- As SINR decreases, gain increases due to cooperation by relays
- Gain increases as relay links become stronger than SD link
- Gain decreases as interference link becomes stronger than relay links

Summary

- Proposed optimal relay selection rules outperformed benchmarking schemes for underlay CR
- > Analyzed average SEP and rate of proposed rules
- Performed asymptotic analysis that helped to understand when to use direct SD link over a relay link