Scalable Sparse Bayesian Nonparametric and Matrix Tri-factorization Models for Text Segmentation, Topical analysis and Entity **Resolution in Dyadic data.**

Ranganath B.N.¹ and Shalabh Bhatnagar¹

¹Indian Institute of Science, Bangalore, India

Block Exchangeable model (BEM):Segmentation

- Segmentation of collections of sequence data
 - Laptop review dataset in to facets
 - ▶ News dataset in to stories.
- Occurrence of facets or the stories Order independent

SMTF:Formulation

 $\begin{aligned} 1, \arg\min_{\Phi,\Theta,\mathbb{A}} \frac{1}{2} \|D - \Phi\Theta\mathbb{A}\|_{F}^{2} + \lambda_{1} \sum_{j=1}^{n} \|(\Theta\mathbb{A})_{j}\|_{1} + \lambda_{2} \sum_{j=1}^{m} \|\Theta_{j}\|_{1} + \lambda_{3} \sum_{j=1}^{t} \|\Phi_{j}\|_{1} \\ \text{s.t. } supp(\mathbb{A}) \subseteq supp(\mathcal{A}), \Phi \geq 0, \Theta \geq 0, \mathbb{A} \geq 0, \end{aligned}$ 2, arg min $\frac{1}{2} \|D - \Phi Q\|_F^2 + \frac{1}{2} \|Q - \Theta A\|_F^2 + \lambda_Q \sum_{j=1}^n \|Q_j\|_1 + \lambda_\Theta \sum_{j=1}^m \|\Theta_j\|_1$

- Persistence according to popularity
- Exchangeability in the context of segmentation
 - Specifies the type of permutations of assignments to the random variables that do not affect joint probability under a model.
 - Complete or Group Exchangeability
 - ► All permutations of assignments are equiprobable
 - Segmentation is arbitrary
 - ► LDA and Hierarchical Dirichlet processes (HDP): No Persistence aspect
 - Parameters linear in number of documents

Markov Exchangeability

- ► All permutations with same transition count b/w states are equiprobable.
- ► No Order independence though distinction between permutations.
- ► HMM-LDA, HDP-HMM and Sticky HDP-HMM: Inference process expensive
- Quadratic number of transition parameters

BEM:Solution

- Block Exchangeability (BE)
 - > All permutations preserving the same number of self-transitions and number of nonself transitions for each state along with the ending state are equiprobable.
 - ▷ Amenable to segmentation, Preserves Order Independence.
 - Sparser number of transition parameters (linear).

j=1j=1 $+\lambda_{\Phi}\sum_{i=1}\|\Phi_{j}\|_{1}s.t.supp(\mathbb{A})\subseteq supp(\mathcal{A}), \ \Phi\geq 0, \Theta\geq 0, Q\geq 0, \mathbb{A}\geq 0,$ 2.1, Solving Φ : {arg min $(\Phi^{T})_{i} \ge 0$ $\frac{1}{2} \| (D^{T})_{i} - Q^{T} (\Phi^{T})_{i} \|_{F}^{2} + \lambda_{\Phi} \| (\Phi^{T})_{i} \|_{1}^{2} \}_{i=1:v}$ 2.2, Solving Θ : $\{ \arg\min_{(\Theta^{\mathcal{T}})_i \geq 0} \frac{1}{2} \| (Q^{\mathcal{T}})_i - \mathbb{A}^{\mathcal{T}} (\Theta^{\mathcal{T}})_i \|_F^2 + \lambda_{\Theta} \| (\Theta^{\mathcal{T}})_i \|_1 \}_{i=1:t},$ 2.3, Solving $Q: \{\arg\min_{Q_i \ge 0} \frac{1}{2} \| [D; \Theta \mathbb{A}]_i - [\Phi; eye(t, t)] Q_i \|_F^2 + \lambda_Q \| Q_i \|_1 \}_{i=1:n}$ 2.4, Solving \mathbb{A} : $\{\arg\min_{A_i \ge 0} \frac{1}{2} \| Q_j - \Theta A_j \|_F^2, A_{ij} = 0 \forall i \text{ s.t. } A_{ij} \notin supp(A)\}_{j=1:n}$ Subproblems are solved in an alternating minimization framework using Projected FISTA. Proof for convergence for Projected FISTA.

SMTF:Results

Table: Performance comparison between SMTF, CMF and ATM

	DBLP				REV			
Model	TE	DTa-F1	DTa-ARI	ATa-CCD	TE	DTa-F1	DTa-ARI	ATa-CCD
$SMTF_1$	131240	0.33	0.19	423	43129	0.53	0.46	454
$SMTF_2$	150870	0.28	0.13	423	48376	0.51	0.44	508
CMF	154580	0.25	0.01	428	48588	0.16	0.01	884
ATM	-	0.35	0.24	518	-	0.60	0.55	612

▷ Scalable Inference ▷ BE superclass of CE and subclass of ME. Core part of BEM

> $G \sim DP(\delta, H), P_i^* \sim Beta(a, b)$ for $i = 1 : \infty$ $\pi_{ij} = (1 - P_i^*)G(\phi_j) + P_i^*\delta(i,j), Z_{ij} \sim (\pi_{(Z_{i(i-1)})})$

► Inference

 \triangleright Intractable due to coupling of P^* and G.

▷ Decoupled with introduction of Persistence indicator variables *C*

 $C_{ii} = 0/1$, continuity of state/ new state

Sample Z_{ij} only when $C_{ij} = 1$

BEM:Experiments on News dataset

Model	fC1	IT	Perplexity	Avg _s
Sticky HDP-HMM	1.0	5.4 sec	3141	0.3
BEM	0.12	0.3 sec	1103	0.32

Sparse Matrix Trifactorization (SMTF): Motivation

Topical analysis of dyadic data Product review data, movie data and bibliographic data.

Sparse Entity Resolution Model (SERM): Motivation

Entity resolution in Dyadic data

▷ Identify correct author entity for each of the aliases in all the documents

- ▷ Grouping over the documents
 - Documents share author entities, topics

Sparse relationships

Smaller number of author entities and topics per group. ▷ Smaller number of aliases for author entities.

Existing models

- ▶ LDA for Entity resolution model (LDA-ER)
 - ► Do not utilize textual information for disambiguation of the identical aliases.
 - ► Do not address sparsity issue.
- Grouped Author topic model (GATM)
 - ► Utilizes textual information.
 - ► Uses HDP nonparametric prior over author entities and topics for the groups.
 - ► Do not address sparsity issue.

SERM:Model

- Structurally similar model as that of GATM
- Stick breaking prior of DP: nonparametric in the number of groups ▷ Nonparametric sparsity promoting prior- Indian Buffet process (IBP) over author entities for groups.

- ▷ Genres, research and technology areas, product categories are topics in movies, research domain and the product review data.
- Dyadic association
- ▷ Movie scripts, product literature, research papers and the corresponding words. Consumers, viewers, researchers and the movie scripts, product literature, research papers.
- Sparse relationships between topics and the domain entities Topics and documents ▶ Topics and users

Existing models

- Probabilistic Author topic model (ATM)
 - Estimates three associations of interest to us
 - Do not address sparsity
- Collective matrix factorization (CMF)
 - ► Uses coupled sparse bi-factorization approach.
 - ► Factorizes a binary author-document association matrix.

- ▷ Parametric IBP over topics for the groups leading to scalable solution.
- ▷ k-NN mechanism for selecting smaller number of potential author aliases for the author entities leading to scalability
- ▷ Noise model as that in LDA-ER, GATM employed for generating the aliases.

SERM:Results

Table: Best B-CUBED results for SERM and GATM

	Cit	eseer	Rexa		
Model	time	F1	time	F1	
SERM	3.2	86.06	1.3	77.65	
GATM	21.6	82.21	14	61.49	