# Discovering variable length phrases from symbolic notation of Carnatic music 

Ranjani, H. G. and Prof. T. V. Sreenivas<br>ranjanihg@ece.iisc.ernet.in, tvsree@ece.iisc.ernet.in

## Problem

- Given symbolic transcript of a rāga, discover repetitive phrases


Figure 1: Sample symbol transcript of Begada rāga.

- Let transcript be denoted by $\underline{A}=\left[A_{1}, A_{2}, \ldots A_{I}\right]$.
- Any rhythm cycle, $A_{i} \triangleq\left[u_{t=1} u_{t=2} \ldots u_{t=T_{A_{i}}}\right]$, where swaras, $u_{t} \in V$, with $V=\{S, R, G, M, P, D, N, S\}$.


Figure 2: Rough pitch contours of more than 100 rhythm cycles from symbolic transcripts oBegada rāga

- Multiple and unknown phrases
- Variable length phrases


## Assumptions

- Rhythm cycle contains note sequences : concatenation of independent phrases
- Phrases are well within rhythm cycle
- Phrases are repeated across rhythm cy cles/compositions


## Experimental details

- Publicly available online database [http://www.shivkumar.org/music/] (notations by Dr. Shivakumar Kalyanaraman)
- Experiments on 12 rāgas: Hari-Kambhoji, Bhairavi, Shankarābharana, Thōdi, Nāttai, Panthuvarāli, Madhyamāvathi, Khamas, Begada, Kalyani, Reethigowla and Sahana
- Octave folded
- Each note of unit duration
- Training: > 2000 note sequences; Testing: > 1500 per rāga
- Performance measures: perplexity, semantic relevance


## Conclusions

- Use of 7 notes as generally available in transcription
- Discovering grammatical structure of music
- Obtain phrases containing varied length subsequences
- Multigram perplexity lower than N-gram on training and test data
- Modified multigram for longer length sequences
- Appreciable number of musicological phrases captured


## Formulation

- Any rhythm cycle $A=\left[u_{1}, u_{2}, u_{3}, \ldots, u_{T_{A}}\right]$ s.t. $p(A)=\prod_{k=1}^{Q_{A}} p\left(s_{k}\right) \triangleq \prod_{k=1}^{Q_{A}} \theta_{k}$ where $s_{k}$ is such that $\left|s_{k}\right| \leq N$ and for any $T_{A}>N, Q_{A}>1$. and $s_{1}=\left[u_{b_{0}}, \ldots u_{b_{1}}\right], s_{2}=\left[u_{b_{1}+1}, \ldots u_{b_{2}}\right]$ and $s_{Q_{A}}=\left[u_{b_{Q_{A-1}+1}}, \ldots u_{b_{Q_{A}}}\right], b_{0}=1$ and $b_{Q_{A}}=T_{A}$.
- A typical segmentation on $A$ gives : $A \equiv\left[s_{1}, s_{2}, s_{3}, \ldots s_{Q_{A}}\right]$
- $Z=\left\{b_{k}\right\}, k=1: Q_{A}$
- Estimate parameters, $\theta_{k}$ to maximize posterior $p(\underline{Z} \mid \underline{A} ; \theta): \theta^{*}=\arg \max _{\theta}\left\{\max _{\underline{Z}}\left[\log p\left(\underline{Z} \mid \underline{A} ; \theta^{\text {old }}\right)\right]\right\}$
- Constraint : $\sum_{k=1}^{Y} \theta_{k}=1$ where, $Y$ is total number of unique phrases
- Algorithm

1. Find $Z^{*}, \quad \quad Z^{*}=\arg \max _{Z \in \mathcal{Z}} \log p\left(\underline{A}, \underline{Z} ; \theta^{\text {old }}\right)=\arg \max _{\underline{Z} \in \mathcal{Z}} \log p\left(\underline{A} \mid \underline{Z}, \theta^{\text {old }}\right) p\left(Z ; \theta^{\text {old }}\right)$
2. Update parameters
$\theta_{j}^{\text {new }}=\frac{c^{Z^{*}}}{c^{c^{+}}}$

## Results



Figure 3: Rough pitch contours of more than 100 āvarthanas from training data of rāga Begada (in blue) and top ten frequently occurring phrases (sorted aided by other colors) as discovered by 8 -multigram. Two characteristic phrase(s) are highlighted using (black and red) arrowheads.

- $N$ determines maximum length of sub=sequence
- Propose a modified 2-stage approach:
- Obtain $\left\{s_{k}\right\}_{k=1}^{Y}$ containing $\leq N$ length phrases, using multigram training
- Create new vocab: $V^{\prime}=\left\{V \cup\left\{s_{i}:\left|s_{i}\right|=N, \theta_{i}>P_{t h r}\right\}, \forall i \in\left\{s_{i}\right\}_{i=1}^{Y}\right\}$.
- Replace any occurrence of $s_{i}$ in data with its corresponding entry from $V^{\prime}$
- Obtain $\left\{s_{j}^{\prime}\right\}_{j=1}^{Y^{\prime}}$ containing $N+N^{\prime}$ length phrases through a second stage of multigram training


Figure 4: Perplexity values of $N$-gram, $N$-multigram and modified ( $N, N^{\prime}$ )-multigram on training and testing symbolic music data for the rāgas considered.


Figure 5: Rough pitch contours of more than 100 āvarthanas from training data of rāga Begada (in blue) and top ten frequently occurring phrases (sorted aided by other colors) as discovered by modified $N^{\prime}$-multigram with $\left(N, N^{\prime}\right)=(8,8)$. Two characteristic phrase(s) are highlighted using (black and red) arrowheads

