
Typestate Analysis for Android Applications

Contact email: ashishmishra@csa.iisc.ernet.in

3. Motivation

• Android resources and other APIs have complex usage protocols.

• Violations are difficult to trace and hard to debug.

•Hard to statically analyze, due to complexity at two levels control flow and
typestate protocols.

5. Our Approach
• A precise and correct modelling of Android Asynchronous control flow, call
backs and Component life cycles.

• Generating AICFG , an asynchronous Inter-procedural Control Flow Graph for
the application.

• A flow insensitive whole app , alias analysis to soundly track state changes.

•A flow and context sensitive whole app, Typestate analysis, using graph
reachability based inter-procedural analysis.

Fig 3. Flow Diagram for Typestate analysis

1. Android Control Flow

• Complex control flow structure.

• Asynchronous calls and call backs using IPC binder, called Intent.

• Asynchronous calls from System Services.

• Component life cycles and event handler call backs, to optimize resource usage
and user experience.

6. Results
• First Typestate analysis over Android apps.

• Added 10 new test benchmark apps to DroidBench android static analysis suite.

• Analyzed typestate properties of important resources like Camera, File,
MediaPlayer etc.

• Analyzed Some real world Android applications and found typestate violations in
them.

• Compared against a typeState analysis over Control flow model used by other
works(IccTA , AmanDroid), giving lesser FPs , and increasing the TPs.

4. A Database App

• Precise and correct modelling of asynchronous calls and life cycle call-backs
required.

7. Conclusion

• Gave a first precise and correct model for the Asynchronous control flow, life
cycles and ICC in Android apps.

• Performed the first, sound Typestate analysis over android apps and compared
the results against the control flow semantics used by other Android static analysis
works.

• One limitation occurs due to the use of RHS for the analysis, which does not
scale for big programs, increasing scalability is one future direction we aim at.

8. References
[1] L. Li, et. al. IccTA: Detecting Inter-Component Privacy Leaks in Android Apps. In Proceedings of the 37th

International Conference on Software Engineering (ICSE 2015), 2015 .

[2] F. Wei et. al. Amandroid: A precise and general inter-component data flow analysis framework for security

vetting of android apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’14, pages 1329–1341.

[3]Thomas Reps, et. al. 1995. Precise interprocedural dataflow analysis via graph reachability. In Proceedings

of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL '95).

Ashish Mishra, Y. N. Srikant, Aditya Kanade

Indian Institute of Science

2. Typestate

•Quoting Storm and Yemini-.

“type- determines the set of operations ever permitted on an object, the
typestate determines a subset of these operations permitted in a particular

context”

• Example, Iterators over a Collection object, next permitted only if hasnext is
true.

source- https://developer.android.com

Fig 1. ICC in an Android app Fig 2. Protocol for Android MediaPlayer API

Listing 1. DataBase example app

Table 1. Typestate analysis results on test apps

