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The WCET Problem Experimental Results
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« Primarily in Real time systems, to prove all deadlines of tasks are always met. g - | + 2-core architecture, with
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Y P, Interpretation p, o a, : Cache Hit « The state-of-the-art approach classifies an access as a cache hit only if it is guaranteed to hit the cache
s b across all execution instances.
o BN ° Safe Cache Hit-Miss Classification + Cache hit-miss prediction can be refined in several ways
A . o 1. Two accesses may never miss the cache together in the same execution instance.
Control Flow Graph s e 2. An access inside a loop may not miss the cache in all iterations.

3. An access may not miss the cache in the worst-case execution instance.

Shared Cache Analysis Our Approach

Find accesses which are not guaranteed to hit the cache
core 1 core 2 .. | coren

« Given assignment of programs to cores, find the

shared cache behavior of each program Abstract Interpretation based static analysis
« Primary Issue : Shared cache accesses made by other
cores can evict cache blocks of program under
u K] L1 analysis and cause extra cache misses.
« Due to interfering accesses, it is almost impossible to Characterize the program paths along which individual accesses miss the cache
guarantee that an access will always hit the cache. - n
Cache Miss Paths Abstract Inlerg;ea!‘e;,lslgn based static

Worst Case Interference Placement Analyze cache miss paths of accesses to refine prediction
« Instead of classifying individual accesses as hit or miss, we try to find lower bounds on the number of cache Integer Linear Programming-based approach
hits, given the number of interfering accesses coming from other cores. Algorithmic approach

+ To do so, we find the worst-case distribution of interferences in the program, which can cause the maximum

number of shared cache misses. Experimental Results
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Eviction Distance
« Average precision improvement of our approach over previous approaches - 8 %.
« Algorithmic approach matches the precision improvement of ILP-based approach, and also scales better for
large programs.
Distribute interferences to maximize number of cache misses "
Conclusion
Integer Linear Programming-based approach * In this thesis, we have proposed precise, scalable approaches to cache analysis aimed towards tighter
Greedy Algorithmic approach estimation of WCET.
+ Shared cache analysis in multi-cores
Properties of Our Approach —;):; r:;ghu;a:h. called Worst Case Interference Placement, is significantly precise than previous
+ We break down WCIP into two inter-dependent problems: + Private cache analysis
1. Finding the worst-case path in the program in the presence of interferences precision i over previous with a moderate increase in analysis
2. Finding the distribution of interferences on a program path which causes the maximum number of shared time.
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‘The approximate algorithmic approach makes two assumptions to make the problem tractable, and provides
aWCET estimate in polynomial time.




