Precise Analysis of Private and Shared Caches for tight WCET

estimates
Kal Nagar, Y N Srikant

The WCET Problem Experimental Results
+ WCET Problem : To determine W such that W > Actual Execution Time of P on A [8B1LP-based WCIP E0 Approximate WCTP |
« Primarily in Real time systems, to prove all deadlines of tasks are always met. g - | + 2-core architecture, with
« Execution time of a program depends heavily on the cache behavior of its memory £ “ ?; : | 4 KB Shared Cache.
accesses I | | « WCIP provides average
i - Precise prediction of cache behavior is necessary for obtaining tight WCET estimates. N e . | | precision improvement of
A £ 0 - | 26 % over previous approach
£ || | |
Ew é o |
5 o i %\] i
Standard approach to cache analysis i 2 —— _! J‘
R O A R
& &Y S ¢S & &
Y. P, P— .
. =
-p, 2 (T _ :
vng P mm Qe No interfe but due to mult P"vate Che e hit or miss the cache in different
3, : Cache Miss « No interferences, but due to multiple program paths, an access may hit or miss the cache in different
2 M a Aoty P [mylm, - 2, - Cache Miss execution instances.
Y P, Interpretation p, o a, : Cache Hit « The state-of-the-art approach classifies an access as a cache hit only if it is guaranteed to hit the cache
s b across all execution instances.
o BN ° Safe Cache Hit-Miss Classification + Cache hit-miss prediction can be refined in several ways
A . o 1. Two accesses may never miss the cache together in the same execution instance.
Control Flow Graph s e 2. An access inside a loop may not miss the cache in all iterations.

3. An access may not miss the cache in the worst-case execution instance.

Shared Cache Analysis Our Approach

Find accesses which are not guaranteed to hit the cache
core 1 core 2 .. | coren

« Given assignment of programs to cores, find the

shared cache behavior of each program Abstract Interpretation based static analysis
« Primary Issue : Shared cache accesses made by other
cores can evict cache blocks of program under
u K] L1 analysis and cause extra cache misses.
« Due to interfering accesses, it is almost impossible to Characterize the program paths along which individual accesses miss the cache
guarantee that an access will always hit the cache. - n
Cache Miss Paths Abstract Inlerg;ea!‘e;,lslgn based static

Worst Case Interference Placement Analyze cache miss paths of accesses to refine prediction
« Instead of classifying individual accesses as hit or miss, we try to find lower bounds on the number of cache Integer Linear Programming-based approach
hits, given the number of interfering accesses coming from other cores. Algorithmic approach

+ To do so, we find the worst-case distribution of interferences in the program, which can cause the maximum

number of shared cache misses. Experimental Results

aLp-based @ Alortic ipoases = Algortmic
Find shared cache isolal £ g 2
I B
Abstract Interpretation based static analysis § » N
E; 0 g .
¥ 4 |
1 £
N wm.w,.—rw bosescn 5O I-II .—-I
P et e ., B e e e
Characterize impact of interferences on individual cache hits penchmarks Benchmarks
Cache Hit Paths ~ ~
2 . Abstract Interpretation based static analysis Small Benchmarks (Code size ~ 10 KB) Large Benchmarks (Code size ~ 100 KB)
Eviction Distance
« Average precision improvement of our approach over previous approaches - 8 %.
« Algorithmic approach matches the precision improvement of ILP-based approach, and also scales better for
large programs.
Distribute interferences to maximize number of cache misses "
Conclusion
Integer Linear Programming-based approach * In this thesis, we have proposed precise, scalable approaches to cache analysis aimed towards tighter
Greedy Algorithmic approach estimation of WCET.
+ Shared cache analysis in multi-cores
Properties of Our Approach —;):; r:;ghu;a:h. called Worst Case Interference Placement, is significantly precise than previous
+ We break down WCIP into two inter-dependent problems: + Private cache analysis
1. Finding the worst-case path in the program in the presence of interferences precision i over previous with a moderate increase in analysis
2. Finding the distribution of interferences on a program path which causes the maximum number of shared time.
cache misses)) Publications
- lbdisylisim e U Bh oy s e e 0 L D s p e, 1. Precise shared cache analysis using optimal interference placement. Kartik Nagar and Y.N. Srikant.
= For problem 2, we propose an algorithmic greedy approach which chooses cache hits for interference 20th IEEE Real Time and and Applicati jum (RTAS), 2014.
distribution based o increasing order of eviction distance - 2. Path sensitive cache analysis using cache miss paths. Kartik Nagar and Y.N. Srikant. 16th
+ This guarantees that the increase in WCET due to interferences would be linear in the number of International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), 2015.
interferences. o)) 3. Fastand Precise Worst Case Interference Placement for Shared Cache Analysis. Kartik Nagar and
+ The ILP-based approach encodes both problems in a single ILP, and directly provides the WCET of a Y.N. Srikant. Accepted in ACM Transactions on Embedded Computing Systems (TECS), 2015.

program as the value of the objective function.
‘The approximate algorithmic approach makes two assumptions to make the problem tractable, and provides
aWCET estimate in polynomial time.

