

Visual Flow Analysis and Saliency Prediction

Srinivas S S Kruthiventi and R. Venkatesh Babu Video Analytics Lab, Dept. of Computational and Data Sciences Indian Institute of Science, Bangalore

Flow Analysis in Surveillance Videos

Dominant Flows - Recurring motion patterns in a video

Static Flow Videos

Dynamic Flow Videos

Long-term Flow

Segments

Applications:

Flow statistics, Path Prediction, Anomaly Detection

Static Flow Scenarios

Video Frame

Mean motion vectors represented on a Conditional Random Field

Coarse Orientation Segments Fine Orientation Segments

Video Frame Ground-truth

Proposed Method

Dynamic Flow Scenarios

Application: Vehicle Path Prediction

Dominant Flow Models

and Segmentation

Flow Segment Clustering

Junction Video: 12 Dominant Flows

Adams: 4 Dominant Flows

Visual Saliency Prediction using Deep Convolutional Networks

 Visual saliency is the distinct perceptual quality of a region in the image which makes it to stand out and grab human attention

Text

Color Contrast

Centre bias

many more

- Wide variety of possible causes, both low-level and high-level, make it difficult to hand-craft good features for predicting saliency
- Our Approach: End-To-End Deep Learning system from image to saliency map

- DeepFix: Fully Convolutional Network for Eye Fixation Prediction
- Kernels of different sizes operating in parallel -- to characterize the object semantics simultaneously at multiple

of complex semantic features

scales

Large depth - to enable the extraction

- Kernels with large receptive fields for capturing the global context
- Location biased convolutional layers for learning location dependent patterns such as the center-bias present in eye fixations

Saliency Unified: A Deep Architecture for simultaneously predicting Eye Fixations and segmenting Salient Objects

References: 1. Srinivas K and R. Venkatesh Babu. "Crowd flow segmentation in compressed domain using CRF." *IEEE ICIP*, 2015.

- 2. Srinivas K, and R. Venkatesh Babu. "Dominant Flow Extraction and Analysis in Traffic Surveillance Videos." IEEE CVPRW 2015.
- 3. Srinivas K, Kumar Ayush, and R. Venkatesh Babu. "DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations." arXiv 2015
- 4. Srinivas K, Vennela G., Jaley D. and R. V. Babu. "Saliency Unified: A Deep Architecture for simultaneous Eye Fixation Prediction and Salient Object Segmentation." IEEE CVPR 2016.