Automatic Optimization of Arrays in Affine Loop Nests
Somashekaracharya G Bhaskaracharya'*?, Advisor: Uday Bondhugula'

Storage Optimization

Basic Goal Reuse memory locations for values without
overlapping lifetimes

— Reuse within a given array or across different arrays

— Crucial for data-intensive programs

— run larger problem size with a fixed amount of main memory
— stencils, image processing applications, DSL compilers

— affine loop-nests

Contracting A Particular Array

for(t=1; t<=N; i++)
for(i=1; i<=N; i++)
/*S*/ Alt,i] = £(A[t-1,i-1] + A[t-1,i]
+ A[t-1,1i+1]);
(a) 1-d stencil using N storage
Dependences (1,—1), (1,0) and (1,1) Live-out A[T, x|
Array A can be contracted to size 2 x N. Optimal?

for(t=1; t<=N; i++)
for(i=1; i<=N; i++)
/*Sx/AL(i-t+N) % (N+1)] = £C(A[(i-t+N) % (N+1)]
+ A[(i-t+1+N) 7 (N+1)]
+ A[(i-t+2+N) % (N+1)1);

(b) Array contracted to N+41 cells. Storage optimal!

Intra-Array Reuse — Typical Approach

— Contract array along one or more directions to fixed sizes

Step 1: Determine good directions

— canonical directions need not be good ones
— can be difference between N?, 2N, N + 1 storage for given

N x N array

Step 2: Minimize the array size along these directions
— thoroughly studied by Lefebvre and Feautrier [1998]

— No good heuristics for Step 1
— Darte et al [2005], Lefebvre and Feautrier [1998]

— work with canonical basis or assume that directions are given.

An Array Partitioning Approach

Partitions the iteration space such that each partition uses
a single memory location.

Storage hyperplane (—1, 1) creating (2N — 1) partitions.
Good Directions? Hyperplanes with good orientations

Contraction? Minimize the number of partitions created
Dimensionality? Number of storage hyperplanes found

Two array indices 7, J, (i &), conflict with each other and
the conflict relation ¢ >x1 7 holds it the corresponding array

elements are simultaneously live under the given schedule 6.

for(i=2; i<=n; i++)
fib[i] = fib[i-1] + fib[i-2];

result = fib[n];

Dependences? (1 —2) = gaw ¢, (1 — 1) = paw 1

Live Out? fib(n) Conflicts? i< (i — 1)
Modulo storage mapping: fibli| — fib[t mod 2|

Conflict 7 < 7 is satisfied by hyperplane Cifld— f; =+ 0 .

Indian Institute of Science! National Instruments?

Conflict Set Specification

for(t=1; t<=N; i++)

for(i=1; i<=N; i++)
/*S*/ Alt,i] = A[t,i-1] + A[t-1,i];
for(i=1; i<=N; i++)

result = result + A[i,N] + A[N,i];

T T
UL:N t=Ne (°/;i,°) .

Conflicts in different conflict
polyhedra.

The flow dependences. Live-out
portion in yellow.

— Conflicting indices must be mapped to different partitions

Hyperplane (1, 0) Satisfies blue, green conflicts
Hyperplane (0, 1) Satisfies red conflicts

Modulo Storage Mapping Alt,i| — A[t mod N, mod N|
—> No contraction!

But. .. what about Alt,i| — A[(¢ —t) mod (2N —1)| 7

Heuristic To Find Storage Hyperplanes

Conflict Set CS=KiUKyU---UK
Conflict satisfaction (I.5—T.t)>1v ([.5-T.1)< -1

Pair of decision variables xy;, x9; for each conflict polyhedron K;

1if(I5—Tt)>1, Vixt € K,
L1; = . .

0 if otherwise.

1if (Is5—Tt)<—1,Vsxt € K,
Loy — . .

0 if otherwise.

Bound on #partitions

| T.5 - Tt [< (4.P +w)

Vst e CS

T (ﬁﬁ +w) = 71 | F#partitions

Objective 11 Minimize (@.P + w)
Affects Storage size

Conflict satisfaction count 7

n =Nz + x)

T 1l n = | 1 #unsatisfied
polyhedra

Objective | Maximize 7
Impacts Dimensionality

lterate after eliminating satisfied conflicts from the conflict set.

Intra-Array Reuse Example Reuvisited

(1,0), (0, 1) don't satisfy all conflicts

(—1, 1) Satisfies all conflicts creating 2N — 1 partitions
(—2, 1) Satisfies all conflicts creating 3N — 2 partitions
(—3, 1) Satisfies all conflicts creating 4N — 3 partitions

Storage Mapping Alt,i| — A[(¢ — t) mod (2N — 1)]
Storage as well as dimension optimal!

Inter-Array Reuse — Typical Approach

— Decoupling intra-array from inter-array reuse
— e.g. Lefebvre and Feautrier (1998), De Greef et al (1997)

/. Contract each individual array separately

I 1. Exploit inter-array reuse opportunities

— Build the array interference graph

— edge between nodes (statements) S; and .S;
—> S, prematurely overwrites value computed by .S; (or vice-versa)

— Greedy coloring of array interference graph

statements with same colour write to same data structure
— rectangular hull of their contracted arrays

Ping-pong style stencil — an example

for (t=1; t<=N; t++){
for (i=1; i<=N; i++)
Pli] = £(Q[i-1], Ql[il, QLi+1]); /*S1x/
for (i=1; i<=N; i++)
QLil = P[i]; /*S2x/
}
for(i=1; i<=N; i++) result += QI[N] [i];

Arrays P and () are already contracted to size N

S1 S9

Graph colouring: 51, 52 cannot write to same data structure
- Pli] and Q|7] are simultaneously live.

Better Solution S;(t,1) — A|(¢ —¢) mod (N +1)], j=1,2

Need unified approach to exploit intra-array and inter-array reuse

Global Unified Array Space

|. Convert to single-assignment form
— statement S; writes to own local array space A; (S;(i) writes to A,[i))

Il. Unify local array spaces into (d + 1)-d global array space A
— A|j] = A;, padded with (d — d;) dimensions
for(t=1; t<=N; t++){
for(i=1; i<=N; i++)
/*S0*/A[0,t,i]=f((i>1&&t>17?A[1,t-1,i-1]:Q[i-1]),
(t>17A[1,t-1,i]1:Q[i]),
(i<N&&t>17A[1,t-1,i+1]:Q[i+1]));
for(i=1; i<=N; i++)
/*S1x/A[1,t,i] = A[O0,t,i];
I

for(i=1; i<=N; i++) result += A[1,N,i];
Outermost dimension to index local array spaces

— Partition global array space separately with hyperplanes I',1%

for statements S5, S5;
— Hyperplane also characterized by its offset
— constant shift of a local array space can enable inter-array reuse

Conflict Satisfaction In Global Array Space

A conflict 7 > j in global array space such that i € Als]
and j € Alt] is said to be satisfied by hyperplanes I'; and
['; with offsets o5 and o; if I'g.2 +0s — 1.7 — 0 # 0 .

Storage Hyperplanes For Global Array Space

Conflict Set
To Find

CS = Csmtra U Csmter — Kl U KQ J--- U Kl
5(1) 5(777»—1)

For each statement S, with offsets 5;-0), iy, 05

m partitioning hyperplanes ﬁjO), fgl), o ﬁgm—l)

— An intra-statement conflict associated with .5
— satisfied by atleast one of the hyperplanes found for S;

— An inter-statement conflict associated with S; and S,

— satisfied by pair of hyperplanes ﬁ§-l) and ﬁ,(gl) found at same level [

An Integrated Heuristic

A pair of decision variables xy;, r9; for each conflict polyhedron K
;=1 of (Fj.§—|—5j—ka—5k)21 else 0, Vit € K,
xo =1 if (Fj.§—|— 5j — Fk.F— 5/4;) < —1 else 0,V s t e K;

Bounds for conflicts associated with statement Sj
Intra-statement : | I:;-.§— ﬂf|§ (U]ﬁ + w;) V5 t e CSintra

Inter-statement : | [;.5+ 8, — [t — & |< (ﬁ;ﬁ + w’) V8 t' € CSinter

Inter-statement polyhedron associated with S; must be satisfied only if @’ = ;

1. Maximize Conflict Satisfaction
(1 + T9;)

|. Maximize Conflict Satisfaction

Nintra vi KiGZCSmm(xM + T2;) Minter Vi, K;€CSier

Il Minimize (i;.P 4 w;) for each
statement S; Affects storage size

lterate after eliminating satisfied conflicts from the conflict set

IV. Minimize (ﬁ;ﬁ + w}) for each
statement S; Affects storage size

Ping-Pong Style Stencil — Example Reuvisited

t . t

oooooo
oooooo

oooooo

oooooo

(a) Intra and inter-statement conflicts. (b) (0, —1, 1) satisfies all conflicts

(0,0,1),(0,1,0) Do not satisfy all conflicts

(0, —1, 1) Satisfies all conflicts creating N + 1 partitions

(0, —2, 1) Satisfies all conflicts creating /N + 2 partitions

(0, —3, 1) Satisfies all conflicts creating N + 3 partitions

Storage Mapping Alj,t,i] — A[(i —t) mod (N + 1)]
Statement S1 is a redundant copy statement!

Summary

— Unified heuristic for intra-array and inter-array storage reuse
— array space partitioning to find good storage hyperplanes

— Heuristic driven by a fourfold objective function.

— greedy conflict satisfaction (impacts the dimensionality).
— minimizes the partitions (minimizes dimension sizes).
— factors in inter-statement conflicts (exploits inter-statement reuse).

— Developed SMO tool—a polyhedral storage optimizer.

— effective on several real-world examples.
— storage mappings which are asymptotically better than those by
existing techniques.

