
Automatic Optimization of Arrays in Affine Loop Nests
Somashekaracharya G Bhaskaracharya1,2, Advisor : Uday Bondhugula1

Indian Institute of Science1 National Instruments2

Storage Optimization

Basic GoalReuse memory locations for values without
overlapping lifetimes

−Reuse within a given array or across different arrays
−Crucial for data-intensive programs
− run larger problem size with a fixed amount of main memory
− stencils, image processing applications, DSL compilers
− affine loop-nests

Contracting A Particular Array

for(t=1; t<=N; i++)
for(i=1; i<=N; i++)

/*S*/ A[t,i] = f(A[t-1,i-1] + A[t-1,i]
+ A[t-1,i+1]);

(a) 1-d stencil using N2 storage
Dependences (1,−1), (1, 0) and (1, 1) Live-outA[T, ∗]
Array A can be contracted to size 2×N. Optimal?

for(t=1; t<=N; i++)
for(i=1; i<=N; i++)

/*S*/A[(i-t+N) % (N+1)] = f(A[(i-t+N) % (N+1)]
+ A[(i-t+1+N) % (N+1)]

+ A[(i-t+2+N) % (N+1)]);
(b) Array contracted to N+1 cells. Storage optimal!

Intra-Array Reuse – Typical Approach

−Contract array along one or more directions to fixed sizes
Step 1:Determine good directions

− canonical directions need not be good ones
− can be difference between N 2, 2N,N + 1 storage for given
N ×N array

Step 2:Minimize the array size along these directions
− thoroughly studied by Lefebvre and Feautrier [1998]

−No good heuristics for Step 1
−Darte et al [2005], Lefebvre and Feautrier [1998]
− work with canonical basis or assume that directions are given.

An Array Partitioning Approach

Storage Partitioning Hyperplane

Partitions the iteration space such that each partition uses
a single memory location.

(-1,1)

i

t

i=1 i=Nt=1

t=N

Storage hyperplane (−1, 1) creating (2N − 1) partitions.
Good Directions? Hyperplanes with good orientations
Contraction?Minimize the number of partitions created

Dimensionality? Number of storage hyperplanes found

Conflicting indices ~i ./ ~j

Two array indices ~i,~j, (~i 6= ~j), conflict with each other and
the conflict relation ~i ./ ~j holds if the corresponding array
elements are simultaneously live under the given schedule θ.

for(i=2; i<=n; i++)
fib[i] = fib[i-1] + fib[i-2];

result = fib[n];
Dependences? (i− 2)→RAW i, (i− 1)→RAW i

Live Out? fib(n) Conflicts? i ./ (i− 1)
Modulo storage mapping: fib[i]→ fib[i mod 2]

Conflict Satisfaction

Conflict~i ./ ~j is satisfied by hyperplane ~Γ if ~Γ.~i−~Γ.~j 6= 0 .

Conflict Set Specification

for(t=1; t<=N; i++)
for(i=1; i<=N; i++)

/*S*/ A[t,i] = A[t,i-1] + A[t-1,i];
for(i=1; i<=N; i++)

result = result + A[i,N] + A[N,i];

i

t

i=1 i=Nt=1

t=N

The flow dependences. Live-out
portion in yellow.

(t′, i′)

i

t

i=1 i=Nt=1

t=N

Conflicts in different conflict
polyhedra.

−Conflicting indices must be mapped to different partitions

Hyperplane (1,0) Satisfies blue, green conflicts
Hyperplane (0,1) Satisfies red conflicts
Modulo Storage MappingA[t, i]→ A[t mod N, i mod N ]

=⇒ No contraction!
But. . . what about A[t, i]→ A[(i− t) mod (2N − 1)] ?

Heuristic To Find Storage Hyperplanes

Conflict Set CS = K1 ∪K2 ∪ · · · ∪Kl

Conflict satisfaction (~Γ.~s− ~Γ.~t) ≥ 1 ∨ (~Γ.~s− ~Γ.~t) ≤ −1
Pair of decision variables x1i, x2i for each conflict polyhedron Ki

x1i =

1 if (~Γ.~s− ~Γ.~t) ≥ 1, ∀ ~s ./ ~t ∈ Ki,
0 if otherwise.

x2i =

1 if (~Γ.~s− ~Γ.~t) ≤ −1, ∀ ~s ./ ~t ∈ Ki,
0 if otherwise.

Conflict satisfaction count η
η = Σi=l

i=1(x1i + x2i)
↑ ↓ η =⇒ ↓ ↑ #unsatisfied

polyhedra
Objective IMaximize η

Impacts Dimensionality

Bound on #partitions
| ~Γ.~s− ~Γ.~t |≤ (~u. ~P + w)
∀~s ./ ~t ∈ CS
↑ ↓ (~u. ~P + w) =⇒ ↑ ↓ #partitions
Objective IIMinimize (~u. ~P + w)

Affects Storage size
Iterate after eliminating satisfied conflicts from the conflict set.

Intra-Array Reuse Example Revisited

(t′, i′)

(-1,1) i

t

i=1 i=Nt=1

t=N (1,0), (0,1) don’t satisfy all conflicts
(−1,1) Satisfies all conflicts creating 2N− 1 partitions
(−2,1) Satisfies all conflicts creating 3N − 2 partitions
(−3,1) Satisfies all conflicts creating 4N − 3 partitions

Storage MappingA[t, i]→ A[(i− t) mod (2N − 1)]
Storage as well as dimension optimal!

Inter-Array Reuse – Typical Approach

−Decoupling intra-array from inter-array reuse
− e.g. Lefebvre and Feautrier (1998), De Greef et al (1997)

I.Contract each individual array separately
II. Exploit inter-array reuse opportunities
− Build the array interference graph
− edge between nodes (statements) Si and Sj

=⇒ Si prematurely overwrites value computed by Sj (or vice-versa)
− Greedy coloring of array interference graph

statements with same colour write to same data structure
− rectangular hull of their contracted arrays

Ping-pong style stencil – an example

for (t=1; t<=N; t++){
for (i=1; i<=N; i++)

P[i] = f(Q[i-1], Q[i], Q[i+1]); /*S1*/
for (i=1; i<=N; i++)

Q[i] = P[i]; /*S2*/
}
for(i=1; i<=N; i++) result += Q[N][i];

Arrays P and Q are already contracted to size N
S1 S2

Graph colouring: S1, S2 cannot write to same data structure
∵P [i] and Q[i] are simultaneously live.

Better SolutionSj(t, i)→ A[(i− t) mod (N + 1)], j = 1, 2
Need unified approach to exploit intra-array and inter-array reuse

Global Unified Array Space

I. Convert to single-assignment form
− statement Sj writes to own local array space Aj (Sj(~i) writes to Aj[~i])
II. Unify local array spaces into (d+ 1)-d global array space A
−A[j] = Aj, padded with (d− dj) dimensions
for(t=1; t<=N; t++){

for(i=1; i<=N; i++)
/*S0*/A[0,t,i]=f((i>1&&t>1?A[1,t-1,i-1]:Q[i-1]),

(t>1?A[1,t-1,i]:Q[i]),
(i<N&&t>1?A[1,t-1,i+1]:Q[i+1]));

for(i=1; i<=N; i++)
/*S1*/A[1,t,i] = A[0,t,i];
}
for(i=1; i<=N; i++) result += A[1,N,i];

Outermost dimension to index local array spaces
−Partition global array space separately with hyperplanes Γs,Γt

for statements Ss,St
−Hyperplane also characterized by its offset
− constant shift of a local array space can enable inter-array reuse

Conflict Satisfaction In Global Array Space

A conflict ~i ./ ~j in global array space such that ~i ∈ A[s]
and ~j ∈ A[t] is said to be satisfied by hyperplanes ~Γs and
~Γt with offsets δs and δt if ~Γs.~i + δs − ~Γt.~j − δt 6= 0 .

Storage Hyperplanes For Global Array Space

Conflict Set CS = CSintra ∪ CSinter = K1 ∪K2 ∪ · · · ∪Kl

To Find For each statement Sj, with offsets δ(0)
j , δ

(1)
j , . . . , δ

(m−1)
j ,

m partitioning hyperplanes ~Γ(0)
j , ~Γ

(1)
j , . . . , ~Γ

(m−1)
j

−An intra-statement conflict associated with Sj
− satisfied by atleast one of the hyperplanes found for Sj
−An inter-statement conflict associated with Sj and Sk
− satisfied by pair of hyperplanes ~Γ(l)

j and ~Γ(l)
k found at same level l

An Integrated Heuristic

Conflict satisfaction (~Γj.~s + δj − ~Γk.~t− δk) ≥ 1 ∨
(~Γj.~s + δj − ~Γk.~t− δk) ≤ −1

A pair of decision variables x1i, x2i for each conflict polyhedron Ki

x1i = 1 if (~Γj.~s + δj − ~Γk.~t− δk) ≥ 1 else 0, ∀ ~s ./ ~t ∈ Ki

x2i = 1 if (~Γj.~s + δj − ~Γk.~t− δk) ≤ −1 else 0, ∀ ~s ./ ~t ∈ Ki

Bounds for conflicts associated with statement Sj
Intra-statement : | ~Γj.~s− ~Γj.~t |≤ (~uj. ~P + wj) ∀~s ./ ~t ∈ CSintra

Inter-statement : | ~Γj.~s + δj − ~Γk.~t− δk |≤ (~u′j. ~P + w′j) ∀~s ./ ~t ∈ CSinter

Inter-statement polyhedron associated with Sj must be satisfied only if ~u′j = ~uj

I. Maximize Conflict Satisfaction
ηintra = ∑

∀i, Ki∈CSintra
(x1i + x2i)

III. Maximize Conflict Satisfaction
ηinter = ∑

∀i, Ki∈CSinter
(x1i + x2i)

II. Minimize (~uj. ~P + wj) for each
statement Sj Affects storage size

IV. Minimize (~u′j. ~P + w′j) for each
statement Sj Affects storage size

Iterate after eliminating satisfied conflicts from the conflict set

Ping-Pong Style Stencil – Example Revisited

(t, i)

(t, i)

i

t

i=1 i=Nt=1

t=N

(a) Intra and inter-statement conflicts.

(0,-1,1)

(t, i)

(t, i)

i

t

i=1 i=Nt=1

t=N

(b) (0,−1, 1) satisfies all conflicts
(0,0,1), (0,1,0) Do not satisfy all conflicts
(0,−1,1) Satisfies all conflicts creating N + 1 partitions
(0,−2,1) Satisfies all conflicts creating N + 2 partitions
(0,−3,1) Satisfies all conflicts creating N + 3 partitions
Storage Mapping A[j, t, i]→ A[(i− t) mod (N + 1)]

Statement S1 is a redundant copy statement!

Summary

−Unified heuristic for intra-array and inter-array storage reuse
− array space partitioning to find good storage hyperplanes
−Heuristic driven by a fourfold objective function.
− greedy conflict satisfaction (impacts the dimensionality).
−minimizes the partitions (minimizes dimension sizes).
− factors in inter-statement conflicts (exploits inter-statement reuse).
−Developed SMO tool—a polyhedral storage optimizer.
− effective on several real-world examples.
− storage mappings which are asymptotically better than those by

existing techniques.


