
 
 

 
Introduction 
• Centrality metrics like Betweenness quantify importance of a node with respect to 

the entire network. 
• It is used on social networks, studying structures in biological networks and for 

identifying hubs in transportation networks. 
• Computing exact Betweenness of a network is computationally expensive. 

Our Method 
• We developed a novel fine-grained CPU-GPU hybrid algorithm for Betweenness 

Centrality that harnesses the multi-source property of BC computations. 
• Our hybrid approach gives 80% improvement in performance, and 80-90% less 

CPU-GPU communications w.r.t Totem’s hybrid strategy based on the BSP 
approach. 

 

MOTIVATION AND CONTRIBUTION 

 
 
 

Betweenness Score Calculation 
• For a graph G = (V,E), where V is the set of vertices and E, the set of edges. Let σst 

denote the number of shortest path from vertex ‘s’ to vertex ‘t’, where s ≠ t, and 
σst(v) denote the number of such paths passing through vertex ‘v’. 

• So δst(v) = σst(v) / σst  ,  where δst(v) denotes the pair-wise dependency between of 
the pair ‘s’ and ‘t’ on the vertex ‘v.’ 

• The Betweenness Centrality score of the vertex is given by  

 BC(v)   =    δst(v)s
≠
v
 ≠ 
t
∈
V

 
Brandes Algorithm 
• The forward phase consists of a BFS or SSSP traversal with ‘s’ as the source.  For 

each vertex the number of shortest paths and predecessor list is calculated.  
• The number of shortest paths for ‘v’ from source ‘s’ is denoted as σsv. 
• ‘u’ is a predecessor of ‘v’ if ‘u’ lies on the shortest path from ‘s’ to ‘v’. 

• The backward phase traverses the vertices in descending order of their distance 
from ‘s’. The dependency δs(v)  is calculated by  

δs(v)  =   
σsv
σsuu:v∈Ps(u)
 
(1 + δs(u)) 

      , where Ps(u) is the predecessor’s list of u: 
• At the end of backward phase, the Betweenness score of each vertex ‘v’ is 

calculated by  

BC[v]  =   δs(v)

s
≠
vЄV

 

 

BETWEENESS AND BRANDES ALGORITHM 

 
 

 

We try to find the shortest paths that lie across the partitions. The rest of 
shortest paths can be found out asynchronously in each partition. 

Initialization phase: 
• The graph is partitioned between CPU and GPU in a flexible ratio based on 

their processing power. 
• A border matrix is computed for each part which stores the relative 

distance between each pair of border vertex in that partition. 

Forward phase: 
• Initial step: A source ‘s’ is selected; BFS/SSSP  
   is performed in the same partition as ‘s’.  
   A border vector of distance values is stored.  
• Iterative step: The border vector and the  
   border matrix from the initialization phase  
   are used to find the exact distances values. 
• Relaxation step: The distances of the border 
     vertices is used to asynchronously compute the   
     distances of all the vertices in each partition without communication. 

Backward phase: 
• In each partition the CPU/GPU will start   
    the backward phase from the minimum   
    level in the partition. 
• Each partition will wait if it finds a  
    border vertex at the current level  
    which requires data in the other part. 
• The partition will then request the data  
    for that vertex without hindering the  
    execution of the other partition. 

HYBRID CPU-GPU ALGORITHM  

 
 

Setup 
• We perform experiment on a heterogeneous system with a dual octo-core Intel Xeon 

and a NVIDIA Kepler K20.  
• We used directed graphs from  datasets of 10th Dimacs challenge, The University of 

Florida Sparse  Matrix Collection and the Stanford Network Analysis Platform (SNAP). 
E.g  USA-Full (|V|=23M,|E|=57M), delaunay_n25(|V|=33M, E|=167M),web-
edu(|V|=10M, E|=55M), etc. 

• The CPU forward phase is based on frontier-based vertex-parallel algorithm of 
Madduri et al.[3]. The GPU part is based on frontier-based edge-parallel BFS code of 
LoneStar-GPU version 2.0 [4]. 

• We compared our implementation(HyBIR) with  
CPU standalone and GPU standalone codes based on our hybrid 

algorithm. 
Totem[2], a hybrid framework which follows with CPU standalone and 
    GPU standalone codes based on our hybrid algorithm. 

• We have implemented a variable partitioning technique which partitions the graphs 
based on the CPU-GPU processing capability. 

Results  
• In all the graphs HyBIR out performs the CPU standalone (except nlpkkt(s)). However 
    performs worse than GPU standalone(except for graphs which GPU can’t execute). 

 
 
 
 
 
 
 
 
 
 
 
 
 

• HyBIR outperforms TOTEM for graphs due to 80-90 % less communication. 
 
 
 
 
 
 
 
 
 
 

 
 

• Totem synchronizes between the parts 
     for all the levels  w.r.t source ‘s’ for both  
     forward and backward phase( e.g. in the  
     graph USA-Full there are 6093 levels.). 
• For HyBIR synchronization occurs for the  
     number of edges in the edge cut for both 
     backward and forward phase. (e.g. for the  
     graoh USA-Full the synchronization ranges 
     from 2 to 6 iterations). 

EXPERIMENTATION AND RESULTS 

  
 
 

• Our result shows up to 80% improvement w.r.t the state of art hybrid 
implementation, Totem. 

• Our hybrid approach gives better performance than CPU-only version and explore 
graphs not able to fit in GPU memory. 

• Our semi asynchronous divide and conquer based border aware technique can be 
used for exploring big data graphs with multiple partitions in an efficient manner.     
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