

Introduction
• Centrality metrics like Betweenness quantify importance of a node with respect to

the entire network.
• It is used on social networks, studying structures in biological networks and for

identifying hubs in transportation networks.
• Computing exact Betweenness of a network is computationally expensive.

Our Method
• We developed a novel fine-grained CPU-GPU hybrid algorithm for Betweenness

Centrality that harnesses the multi-source property of BC computations.
• Our hybrid approach gives 80% improvement in performance, and 80-90% less

CPU-GPU communications w.r.t Totem’s hybrid strategy based on the BSP
approach.

MOTIVATION AND CONTRIBUTION

Betweenness Score Calculation
• For a graph G = (V,E), where V is the set of vertices and E, the set of edges. Let σst

denote the number of shortest path from vertex ‘s’ to vertex ‘t’, where s ≠ t, and
σst(v) denote the number of such paths passing through vertex ‘v’.

• So δst(v) = σst(v) / σst , where δst(v) denotes the pair-wise dependency between of
the pair ‘s’ and ‘t’ on the vertex ‘v.’

• The Betweenness Centrality score of the vertex is given by

 BC(v) = δst(v)s
≠
v
 ≠
t
∈
V

Brandes Algorithm
• The forward phase consists of a BFS or SSSP traversal with ‘s’ as the source. For

each vertex the number of shortest paths and predecessor list is calculated.
• The number of shortest paths for ‘v’ from source ‘s’ is denoted as σsv.
• ‘u’ is a predecessor of ‘v’ if ‘u’ lies on the shortest path from ‘s’ to ‘v’.

• The backward phase traverses the vertices in descending order of their distance
from ‘s’. The dependency δs(v) is calculated by

δs(v) =
σsv
σsuu:v∈Ps(u)

(1 + δs(u))

 , where Ps(u) is the predecessor’s list of u:
• At the end of backward phase, the Betweenness score of each vertex ‘v’ is

calculated by

BC[v] = δs(v)

s
≠
vЄV

BETWEENESS AND BRANDES ALGORITHM

We try to find the shortest paths that lie across the partitions. The rest of
shortest paths can be found out asynchronously in each partition.

Initialization phase:
• The graph is partitioned between CPU and GPU in a flexible ratio based on

their processing power.
• A border matrix is computed for each part which stores the relative

distance between each pair of border vertex in that partition.

Forward phase:
• Initial step: A source ‘s’ is selected; BFS/SSSP
 is performed in the same partition as ‘s’.
 A border vector of distance values is stored.
• Iterative step: The border vector and the
 border matrix from the initialization phase
 are used to find the exact distances values.
• Relaxation step: The distances of the border
 vertices is used to asynchronously compute the
 distances of all the vertices in each partition without communication.

Backward phase:
• In each partition the CPU/GPU will start
 the backward phase from the minimum
 level in the partition.
• Each partition will wait if it finds a
 border vertex at the current level
 which requires data in the other part.
• The partition will then request the data
 for that vertex without hindering the
 execution of the other partition.

HYBRID CPU-GPU ALGORITHM

Setup
• We perform experiment on a heterogeneous system with a dual octo-core Intel Xeon

and a NVIDIA Kepler K20.
• We used directed graphs from datasets of 10th Dimacs challenge, The University of

Florida Sparse Matrix Collection and the Stanford Network Analysis Platform (SNAP).
E.g USA-Full (|V|=23M,|E|=57M), delaunay_n25(|V|=33M, E|=167M),web-
edu(|V|=10M, E|=55M), etc.

• The CPU forward phase is based on frontier-based vertex-parallel algorithm of
Madduri et al.[3]. The GPU part is based on frontier-based edge-parallel BFS code of
LoneStar-GPU version 2.0 [4].

• We compared our implementation(HyBIR) with
CPU standalone and GPU standalone codes based on our hybrid

algorithm.
Totem[2], a hybrid framework which follows with CPU standalone and
 GPU standalone codes based on our hybrid algorithm.

• We have implemented a variable partitioning technique which partitions the graphs
based on the CPU-GPU processing capability.

Results
• In all the graphs HyBIR out performs the CPU standalone (except nlpkkt(s)). However
 performs worse than GPU standalone(except for graphs which GPU can’t execute).

• HyBIR outperforms TOTEM for graphs due to 80-90 % less communication.

• Totem synchronizes between the parts
 for all the levels w.r.t source ‘s’ for both
 forward and backward phase(e.g. in the
 graph USA-Full there are 6093 levels.).
• For HyBIR synchronization occurs for the
 number of edges in the edge cut for both
 backward and forward phase. (e.g. for the
 graoh USA-Full the synchronization ranges
 from 2 to 6 iterations).

EXPERIMENTATION AND RESULTS

• Our result shows up to 80% improvement w.r.t the state of art hybrid
implementation, Totem.

• Our hybrid approach gives better performance than CPU-only version and explore
graphs not able to fit in GPU memory.

• Our semi asynchronous divide and conquer based border aware technique can be
used for exploring big data graphs with multiple partitions in an efficient manner.

CONCLUSIONS AND FUTURE WORK

[1] U. Brandes, “A Faster Algorithm for Betweenness Centrality,” The Journal of Mathematical Sociology, vol. 25,
no. 2, pp. 163–177, 2001.
[2] A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu, “A Yoke of Oxen and a Thousand Chickens for
Heavy Lifting Graph Processing,” in International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, Minneapolis, MN, USA - September 19 - 23, 2012, 2012, pp. 345–354.
[3] K. Madduri, D. Ediger, K. Jiang, D. Bader, and D. Chavarria-Miranda, “A Faster Parallel Algorithm and Efficient
Multithreaded Implementations for Evaluating Betweenness Centrality on Massive Datasets,” in Proceedings of
the 2009 IEEE International Symposium on Parallel & Distributed Processing, ser. IPDPS ’09, 2009.
[4] “Lonestargpu,” http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu.

REFERENCES

1Computational and Data Sciences, Indian Institute of Science, Bangalore, India 2Department of Computer Science and Engineering, Indian Institute of Technology, Madras, India
 3Institute for Computational Engineering and Sciences, University of Texas at Austin, USA 4Department of Computer Science, University of Texas at Austin, USA

ashirbad@grads.cds.iisc.ac.in, vss@cds.iisc.ac.in (http://mars.serc.iisc.ernet.in/), rupesh@cse.iitm.ac.in, pingali@cs.utexas.edu

http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu

