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Introduction

• Electromagnetic flowmeter is extensively employed for the
measurement of liquid-metal flow rate in the fast breeder
reactors.
• Reliable measurement is essential for the control and safe

operation of the reactor
• Experimental calibration of electromagnetic flowmeter is

extremely difficult and theoretical approach is preferred
• The governing equations are,

σ∇φ − (∇ · 1

µ
∇)A− σ u×∇×A = σ u×Bap

∇ · (σ∇φ)−∇ · (σ u×∇×A) = ∇ · (σ u×Bap)

where φ is the scalar potential arising out of the current flow, A is the magnetic vector potential asso-
ciated with reaction magnetic field brc, Bap is the applied magnetic field, u is the velocity of liquid
metal, µ is the magnetic permeability, σ is the electrical conductivity.

•Galerkin finite element method (GFEM) is a ready choice to solve the governing equations. Only
in very limited literature whole 3D version of the problem is simulated using GFEM [6]

Galerkin Scheme - Numerical Instability
•GFEM is known to suffer from numerical oscil-

lations when Pe = µσ|u|∆z/2 > 1 . (∆z is the
element length along the flow direction)
•As a remedial measure Streamline upwind/Petrov

Galerkin (SU/PG) scheme is suggested in the al-
lied literature [1] [2].
• SU/PG scheme introduces boundary error [4] [5]

and non-physical current in the solution [8]
• In addition, SU/PG scheme needs calculation of

stabilization parameter and requires more calcu-
lation for higher order elements.

• Scope of the work: To arrive at a ‘Stable Galerkin Finite Element Formulation for Electromagnetic
Flowmeter Analysis’

Proposed Approach
• Classically, numerical stability of the FEM solution is analyzed with the 1D version of the problem

[3] [9]. FEM equations for a regular grid takes the form of difference equation, which is employed
for the required analysis
• Following the same, 1D version of the flowmeter governing equation:

−d
2Ay

dz2
+ µσuz

dAy
dz

= µσuzBx

where, Ay is the y component of the vector potential, uz is the velocity of the liquid metal along
the z− direction and Bx is the input magnetic field.
• The resulting, FEM difference equation:

(−1− Pe)Ay(n−1) + 2Ay(n) + (−1 + Pe)Ay(n+1) = 2Pe∆z
(Bx(n−1) + 4Bx(n) + Bx(n+1)

6

)

• In this work, the Z-transform approach is proposed so as to bring tools from control systems theory.
Accordingly when Pe >> 1, the relation between Ay and the input field Bx can be written as,

Ay
Bx
' ∆z

3

(Z + 0.27)(Z + 3.73)

(Z − 1) (Z + 1)

Pole at ‘-1’ is responsible for the numerical oscillations

• Proposed approach: To seek re-formulation of the RHS so as to introduce necessary zeros

• Scheme-1: Input field on the RHS is restated in terms of magnetic vector potential [7]

Ay
Asy

' − (Z − 1) (Z + 1)

(Z − 1) (Z + 1)

Simulation Results for Scheme-1
• 33598 brick elements with graded structured mesh in the flow direction is used

(µ = 4π × 10−7Hm−1, σsodium = 7.21× 106 Sm−1, σsteel = 1.16× 106 Sm−1)
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• In this scheme, the variation of input field only along the flow direction is considered, which is
generally true for electromagnetic flowmeters

Proposed Scheme - 2
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b̂g − Galerkin scheme

b̂a − Proposed scheme− 1

b̂p − Proposed scheme− 2

•Weighted nodal input magnetic field is considered where
the required weights are constrained so as to be consis-
tent, as well as, brings in necessary zero

• Scheme 2:
Ay
Bx
' ∆z

2

(Z + 1)2

(Z − 1) (Z + 1)
• Performs better than ‘scheme−1’ - double zeros at ‘-1’.
• For both the schemes, extensive 1D and 2D Z-transform

analysis has been performed to ascertain the characteris-
tics of the numerical solution
• Performs well, even when the input magnetic field varies

transverse to the flow direction

Application to other moving conductor problems

• TEAM-9 Standard test Problem Results: Scheme-2 gives stable results, while oscillations are found
in the Galerkin scheme

• Comparison with the analytical solution
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• Scheme-2 results are matching well with the analytical solution of the TEAM-9 problem

Conclusions

• Theoretical evaluation of the sensitivity of electromagnetic flowmeter is a preferred choice for liq-
uid metal flow measurement. Only numerical approach is feasible and GFEM is a ready choice.
The GFEM suffer from numerical instability, when Pe > 1.

• Existing remedial measures in allied fields like SU/PG scheme gives non-physical solutions at the
boundary.

• Two novel stable schemes have been proposed for graded regular mesh along the flow direction.
Accurate results have been obtained for flowmeter and similar problems even at very high flow
rates/velocity
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