Optimal Auctions for Two goods with Uniformly Distributed Valuations

Thirumulanathan D.
Advised by Prof. Rajesh Sundaresan and Prof. Y Narahari Department of Electrical Communication Engineering Indian Institute of Science, Bangalore

Optimal Auctions

An auction mechanism that generates the highest expected revenue to the seller.

The setup

- Auctioneer must sell a single item to a single buyer.
- The buyer has a valuation z known only to him.
- z is picked from a distribution f that is known both to the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- Also, the buyer must NOT be asked to pay more than z.

Optimization problem

\rightarrow Objective: Design an allocation function $q: \mathbb{R}_{+} \rightarrow[0,1]$, and a payment function $t: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, such that $\mathbb{E}_{z \sim f} t(z)$ is maximized.

- Constraints: (1) Buyer must report z truthfully. (2) Buyer must not be asked to pay more than z.

$$
\max _{q(\cdot), t(\cdot)} \mathbb{E}_{z \sim f} t(z)
$$

subject to IC and IR constraints.

Myerson's Optimal solution

- Define the virtual valuation function

$$
\phi(z):=z-\frac{1-F(z)}{f(z)}
$$

- Assume $\phi(z)$ increases in z.
- The solution is as follows:

$$
(q(z), t(z))= \begin{cases}(0,0) & \text { if } z \leq \phi^{-1}(0) \\ \left(1, \phi^{-1}(0)\right) & \text { if } z>\phi^{-1}(0)\end{cases}
$$

An Example

- Let $z \sim$ unif[0, 1]. $F(z)=z, f(z)=1$, and thus $\phi(z)=z-(1-z)=2 z-1$.
- $\phi(z)=0$ when $z=1 / 2$.
- So buyer gets the item for $\mathbf{1} / 2$, if his valuation is at least $\mathbf{1 / 2}$. He doesn't get the item if his valuation is not even $\mathbf{1 / 2}$.
- Optimal auction is a take-it-or-leave-it offer for a reserve price. The reserve price depends only on f.

Two-item Optimal auctions

- The optimal auction when the auctioneer has two items to sell, is NOT Myerson's auction repeated twice.
- Consider $z \sim \operatorname{unif}\left[0, b_{1}\right] \times\left[0, b_{2}\right]$. The optimal auction is:

where line joining P, Q is
$z_{1}+z_{2}=\left(2 b_{1}+2 b_{2}-\sqrt{2 b_{1} b_{2}}\right) / 3$.
- Bundling plays a crucial role in determining the optimal auction.

Our contribution

- General problem of two-item optimal auctions remains unsolved. It is unsolved even when f is restricted to uniform distribution over arbitrary rectangles in \mathbb{R}_{+}^{2}.
- We solve the problem when $z \sim$ unif $\left[c_{1}, c_{1}+b_{1}\right] \times\left[c_{2}, c_{2}+b_{2}\right]$.
- The solution when $\left(c_{1}, c_{2}\right)=(\mathbf{0}, \mathbf{0})$ was solved by forming a dual problem, which is an optimal transport problem that transfers mass from D to itself, subject to the constraint that the difference between the mass densities before and after the transfer equals $\bar{\mu}$, a signed measure defined by f.
- We solve the optimal transport problem so that the difference strictly convex dominates $\bar{\mu}$, for the uniform distribution on arbitrary rectangles.

Theorem 1

Let $z \sim \operatorname{unif}\left[c_{1}, c_{1}+b_{1}\right] \times\left[c_{2}, c_{2}+b_{2}\right]$, with $\left(c_{1}, c_{2}, b_{1}, b_{2}\right) \geq 0$. The structure of the optimal solution takes one of the following eight structures.

Theorem 2

1. The structure of the optimal solution is one of the four structures depicted in Figures (a),(b),(f) and (c), whenever ($c_{1}, c_{2}, b_{1}, b_{2}$) belong to the set

$$
\left\{c_{1} \leq b_{1}, c_{2} \leq 2 b_{2} \frac{b_{1}+c_{1}}{b_{1}+3 c_{1}}\right\} \cup\left\{c_{2} \leq b_{2}, c_{1} \leq 2 b_{1} \frac{b_{2}+c_{2}}{b_{2}+3 c_{2}}\right\}
$$

2. The structure of the optimal solution is one of the three depicted in Figures (c), (d), and (e), whenever $c_{1} \leq b_{1}$ and $c_{2} \geq 2 b_{2}\left(\frac{b_{1}+c_{1}}{b_{1}+3 c_{1}}\right)$. Specifically, the structure is that depicted in Figure (e), if $c_{2} \geq 2 b_{2}\left(b_{1} /\left(b_{1}-c_{1}\right)\right)^{2}$.
3. The structure of the optimal solution is one of the three depicted in Figures (c), (g), and (h), whenever $c_{2} \leq b_{2}$ and $c_{1} \geq 2 b_{1}\left(\frac{b_{2}+c_{2}}{b_{2}+3 c_{2}}\right)$. Specifically, the structure is that depicted in Figure (h), if $c_{1} \geq 2 b_{1}\left(b_{2} /\left(b_{2}-c_{2}\right)\right)^{2}$.
4. The structure is that depicted in Figure (c), whenever $c_{1} \geq b_{1}$ and $c_{2} \geq b_{2}$.

Interpreting the solutions

1. When both c_{1} and c_{2} are small, the solution is very close to the case $\left(c_{1}, c_{2}\right)=(0,0)$. The difference is that the buyer gets item 1 with some positive probability, even when z_{1} is low. Similar is the case for item 2.
2. When c_{1} is small and c_{2} is sufficiently large, the optimal mechanism is to simply sell the second item with probability $\mathbf{1}$ for the least valuation c_{2}, and implement the Myerson's auction for item 1 . Similar is the case when c_{2} is small and c_{1} is sufficiently large.
3. When both c_{1} and c_{2} are large, the optimal mechanism is to bundle the two goods and sell the bundle at the reserve price.
4. Below is the phase diagram indicating the optimal menus when $b_{1}=2$ and $b_{2}=\mathbf{1}$.

