Optimal Auctions for Two goods with Uniformly Distributed Valuations

Thirumulanathan D. Advised by Prof. Rajesh Sundaresan and Prof. Y Narahari

Department of Electrical Communication Engineering Indian Institute of Science, Bangalore

Optimal Auctions

An auction mechanism that generates the highest expected revenue to the seller.

The setup

- Auctioneer must sell a single item to a single buyer.
- ► The buyer has a valuation *z* known only to him.
- *z* is picked from a distribution *f* that is known both to the buyer and the seller.

Our contribution

- General problem of two-item optimal auctions remains unsolved. It is unsolved even when f is restricted to uniform distribution over arbitrary rectangles in \mathbb{R}^2_+ .
- We solve the problem when $z \sim unif[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$.
- The solution when $(c_1, c_2) = (0, 0)$ was solved by forming a dual problem, which is an optimal transport problem that transfers mass from D to itself, subject to the constraint that the difference between the mass densities before and after the transfer equals $\bar{\mu}$, a signed measure defined by f.
- We solve the optimal transport problem so that the difference *strictly convex dominates* $\bar{\mu}$, for the uniform distribution on arbitrary rectangles.
- The auction must be designed so that the buyer reports his valuation truthfully.
- > Also, the buyer must NOT be asked to pay more than z.

Optimization problem

- ▶ Objective: Design an allocation function q : ℝ₊ → [0, 1], and a payment function t : ℝ₊ → ℝ₊, such that E_{z~f}t(z) is maximized.
- Constraints: (1) Buyer must report z truthfully. (2) Buyer must not be asked to pay more than z.

 $\max_{q(\cdot),t(\cdot)} \mathbb{E}_{z \sim f} t(z)$ subject to IC and IR constraints.

Myerson's Optimal solution

• Define the virtual valuation function $\phi(z) := z - \frac{1 - F(z)}{f(z)}$

Theorem 1

Let $z \sim \text{unif}[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$, with $(c_1, c_2, b_1, b_2) \ge 0$. The structure of the optimal solution takes one of the following eight structures.

- Assume $\phi(z)$ increases in z.
- ► The solution is as follows:

$$(q(z), t(z)) = \begin{cases} (0, 0) & \text{if } z \leq \phi^{-1}(0), \\ (1, \phi^{-1}(0)) & \text{if } z > \phi^{-1}(0). \end{cases}$$

An Example

- Let $z \sim unif[0,1]$. F(z) = z, f(z) = 1, and thus $\phi(z) = z (1 z) = 2z 1$.
- $\phi(z) = 0$ when z = 1/2.
- So buyer gets the item for 1/2, if his valuation is at least 1/2. He doesn't get the item if his valuation is not even 1/2.
- Optimal auction is a *take-it-or-leave-it* offer for a reserve price. The reserve price depends only on *f*.

Two-item Optimal auctions

Theorem 2

1. The structure of the optimal solution is one of the four structures depicted in Figures (a),(b),(f) and (c), whenever (c_1, c_2, b_1, b_2) belong to the set

$$\left\{c_1 \leq b_1, c_2 \leq 2b_2 \frac{b_1 + c_1}{b_1 + 3c_1}\right\} \cup \left\{c_2 \leq b_2, c_1 \leq 2b_1 \frac{b_2 + c_2}{b_2 + 3c_2}\right\}.$$

- 2. The structure of the optimal solution is one of the three depicted in Figures (c),(d), and (e), whenever $c_1 \leq b_1$ and $c_2 \geq 2b_2 \left(\frac{b_1+c_1}{b_1+3c_1}\right)$. Specifically, the structure is that depicted in Figure (e), if $c_2 \geq 2b_2(b_1/(b_1-c_1))^2$.
- The structure of the optimal solution is one of the three depicted in Figures (c),(g), and (h), whenever c₂ ≤ b₂ and c₁ ≥ 2b₁ (^{b₂+c₂}/_{b₂+3c₂}). Specifically, the structure is that depicted in Figure (h), if c₁ ≥ 2b₁(b₂/(b₂ c₂))².
- 4. The structure is that depicted in Figure (c), whenever $c_1 \ge b_1$ and $c_2 \ge b_2$.

Interpreting the solutions

- 1. When both c_1 and c_2 are small, the solution is very close to the case $(c_1, c_2) = (0, 0)$. The difference is that the buyer gets item 1 with some positive probability, even when z_1 is low. Similar is the case for item 2.
- 2. When c_1 is small and c_2 is sufficiently large, the optimal mechanism is to simply sell the second item with probability **1** for the least valuation c_2 , and implement the Myerson's auction for item **1**. Similar is the case when c_2 is small and c_1 is sufficiently large.
- The optimal auction when the auctioneer has two items to sell, is NOT Myerson's auction repeated twice.
- Consider $z \sim unif[0, b_1] \times [0, b_2]$. The optimal auction is:

- where line joining P, Q is $z_1 + z_2 = (2b_1 + 2b_2 - \sqrt{2b_1b_2})/3.$ • Bundling plays a crucial role in determining the optimal auction.
- 3. When both c_1 and c_2 are large, the optimal mechanism is to bundle the two goods and sell the bundle at the reserve price.
- 4. Below is the phase diagram indicating the optimal menus when $b_1 = 2$ and $b_2 = 1$.

Indian Institute of Science, Bangalore

thirumulanathan@gmail.com