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1. Problem Formulation
Consider the linear measurement model

y = h ∗ e + w = He + w = Eh + w,
h ∈ RL: point spread function (PSF), e ∈ RM:
Excitation, y ∈ RN: observation, w ∈ RN: Noise
(N = L + M − 1). E ∈ RN×L, H ∈ RN×M are linear
convolution matrices (Conv. mtx.) corresponding
to e and h, respectively.
IObjective: Estimate h and e from y.
I e is assumed to be a sparse vector and h is a smooth and

stable operator.
I The focus is on developing a BD algorithm for such

cases.

2. Issues
I Infinitely many solutions to (1). Hence, we need

priors on e and h to reduce search space.
IThe formulated cost function needs to be

optimized over both e and h and is hence
non-convex, thus leading to local minima issues.
INeed a good initialization to avoid sub-optimal

local minima.

3. Our Contribution
IWe formulate the SBD problem using the MAP

formulation and propose an alternating
minimization algorithm to optimize the
resulting cost function.
IWe show that for well-conditioned systems the

pseudo-inverse solution is a good initialization.
IWe analyze the convergence property of the

algorithm.
IWe show application to epoch estimation in

natural speech signals.

4. MAP Formulation for BD problem
Ih: deterministic but unknown.
I e: Entries ei are assumed to be i.i.d. generalized

p-Gaussian distribution (gpG).

f (e) =
(

p
2Γ(1/p)γσe

)M

exp

−
∑

i

(
|ei|

γσe

)p
 ,

where γ =
(
Γ(1/p)
Γ(3/p)

)1/2
and 0 6 p 6 1.

IThe MAP estimates of the vectors h and e are
(hMAP, eMAP)=arg max

h,e
f (y/e; h)f (e),

=arg min
h,e
‖y − He‖2

2 + λ‖e‖
p
p︸                    ︷︷                    ︸

F(h,e)

.

The joint cost F(h, e) is non-convex and not
straightforward to optimize.

5. An Alternating `p − `2 Projections
Algorithm (ALPA)
The Alt. Min. approach:

h-step:e-step:
Fix h

arg min
e

F (h, e)
Fix e

arg min
h

F (h, e)

Update e

Update h
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e-step: e(k+1) = arg min
e

F
(
h(k), e

)
=

arg min
e
‖y − H(k)e‖2

2 + λ‖e‖
p
p,

where H(k) ∈ RN×M = Conv. mtx.(h(k)).
IFor 0 6 p < 1, F(h(k), e) is non-convex.
I∇eF

(
h(k), e

)
has a singularity at e = 0.

5. An Alternating `p − `2 Projections
Algorithm (ALPA) (contd.)

Iteratively reweighted least-squares (IRLS)
Majorize ‖e‖p

p with weighted `2-norm function and
minimize the cost iteratively.

ẽ(j+1,k) = arg min
e
‖y − H(k)e‖2

2 + λeTWj,ke︸                           ︷︷                           ︸
Fε(h(k),e)

,

where W(j,k) = diag
(

p
(
(ẽ(j,k)i )2 + ε

)p/2−1
)

.

Final solution of e-step (after J iterations of IRLS):
e(k+1) = ẽ(J,k),

e(k+1) =
(
(H(k))T(H(k)) + λW(J,k)

)−1
(H(k))Ty,

Use e(k+1) to update h(k+1) = arg min
h

Fε
(
h, e(k+1)

)
.

h-step: h̃(k+1) = arg min
h
‖y − E(k+1)h‖2

2 = E(k+1)†y,

h(k+1) = h̃(k+1)/‖h̃(k+1)‖2
2.

6. Initialization: Pseudo-inverse Solution
IGiven some initial filter estimate h̃, how good is the

least-squares solution (obtained by setting
W(0,0) = 0) as initialization?
I If true excitation and filter are e∗ and h∗

respectively, δh = h∗ − h̃ and pseudo-inverse
solution is denoted êBLS. The difference

δeBLS = e∗ − êBLS = H∗†(w − δHe∗),
where δH = Conv. mtx(δh).
IWhat is the probability of the average absolute

error 1
M‖δeBLS‖1 becoming too large a value ξ?

P
(

1
M
‖δeBLS‖1 > ξ

)
6

κ2

(ξ− κ‖δH‖2‖e∗‖2/
√

M)2
.

κ is the condition number of the linear system.
IBound applicable only when ξ > κ‖δH‖2‖e∗‖2/

√
M

(comes for Markov inequality).

7. Choice of ‘p’
IChoice is based on simulation results.

0 0.5 1 1.5 2
−20

−10

0

10

p

A
V

G
. 
E

R
R

O
R

 (
d
B

)

 

 

5 dB

10 dB

20 dB

0 0.5 1 1.5 2
0

100

200

p

A
V

G
. 
N

O
. 
IT

E
R

A
T

IO
N

S

 

 

5 dB

10 dB

20 dB

IRoll-off in the excitation estimation error or number
of iteration was not significant in the range
0 6 p 6 0.5, we chose p = 0.1.

7. Convergence Guarantees
IAfter e-step,

Fε(h(k), e(k+1)) 6 Fε
(

h(k), e(k)
)

.

ISimilarly, after h-step,

Fε(h(k+1), e(k)) 6 Fε
(

h(k), e(k)
)

.

IAfter one cycle of ALPA, the majorized cost
function Fε

(
h(k), e(k)

)
Fε(h(k+1), e(k+1)) 6 Fε

(
h(k), e(k)

)
.

IFurther, with ε updated as

ε(k) = c
(

max
∣∣∣e(k)j

∣∣∣)2−p
, with 0 < c� 1, actual

cost function F
(
h(k), e(k)

)
is also non-increasing,

F
(

h(k+1), e(k+1)
)
6 F

(
h(k), e(k)

)
.

8. Simulation Results

IFilter h(n) =
3∑

k=1
e−αkn cos(ωkn) u(n), n =

1, 2, 3, · · · , L,
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9. Voiced speech signal
I 30 ms vowel segment /æ/ (female speaker)
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10. Comparisons
IComparions with Smooth `1/`2 blind

deconvolution (SOOT) [1], sparse linear
prediction (SLP) [2] and MM-based Sparse
Deconvolution (SDMM) [3].

Noise standard deviation→ 0.01 0.02 0.03

MSE in excitation (dB)

ALPA −17.4 −10.7 −8.3
SOOT −2.9 −2.8 −2.8
SLP −0.04 0.46 0.74

SDMM −22.6 −11.0 −3.7

MSE in filter (dB)

ALPA −15.0 −14.3 −10.0
SOOT −10.5 −10.1 −9.3
SLP −4.3 −3.1 −2.7

SDMM −10.9 −6.0 −4.1

MSE in
reconstruction
(dB)

ALPA −21.6 −17.5 −14.1
SOOT −25.24 −20.1 −16.8
SLP −15.6 −12.0 −9.2

SDMM −12.5 −6.8 −4.6

Average time
(sec.)

ALPA 0.1 0.1 0.2
SOOT 1.3 1.3 1.3
SLP 2.7 2.8 2.8

SDMM 0.16 0.17 0.17
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