BS-side Estimation for Reduced Feedback Best-M Scheme in OFDM Systems

Jobin Francis and Neelesh B. Mehta

Dept. of Electrical Communication Eng., IISc, Bangalore

Introduction

- Channel adaptive signalling is used in current cellular systems
 - Scheduling: selecting the user for downlink transmission
 - Rate adaptation: choosing the rate of transmission

Incorporates both subchannel correlation and best-M feedback

For uncorrelated subchannels, the MMSE estimate $\hat{\gamma}_{k,n}$ is given by $\hat{\gamma}_{k,n} = \Omega_k - \frac{s(k, i_M(k))}{\exp\left(\frac{s(k, i_M(k))}{\Omega_k}\right) - 1}$

Can be extended to general subchannel correlation models \bullet

- Improves spectral efficiency and avoids worst-case designs
- Challenge: channel knowledge is needed at the BS

Feedback in the Uplink

- Channel information must be fed back to the BS in the uplink
 - expends uplink radio resources
 - overhead increases as the number of users and subchannels increase
- Complete feedback is impractical and reduced feedback schemes are needed
- They reduce uplink feedback overhead without degrading system throughput
- Several schemes have been proposed:
 - 1. threshold-based scheme
 - 2. one-bit scheme
 - 3. subchannel clustering
 - 4. best-M scheme
 - 5. hybrid schemes etc.

Best-M Scheme

Each user feeds back M largest subchannel SNRs and their subchannel indices •

Throughput-Optimal Approach

- Maximizes the throughput instead of minimizing the MSE
- Define feedback-conditioned goodput: $G_n(k,l) = R_l \mathbf{P}(\gamma_{k,n} \ge T_l | \mathbf{s}_{k,M}, \mathbf{x}_{k,M})$
- It is the average number of successfully transmitted bits with rate R_1 given the best-M feedback

The optimal user ω_n^* and the MCS π_n^* for transmission on subchannel *n* are: $\omega_n^* = \underset{1 \le k \le K}{\operatorname{arg\,max}} \left\{ G_n(k, m_n(k)) \right\},$ $\pi_n^* = m_n(\omega_n^*),$ where $m_n(k) = \operatorname{argmax}_{1 \le l \le L} \{G_n(k, l)\}$ •

For uncorrelated subchannels, \bullet

• Can be extended to general correlation models

Numerical Results

Simulation parameters: $K = N = 10, \ \Omega_k = \Omega \alpha^{k-1}, \ \Omega = 9 \text{ dB}, \ \alpha = 1.4, \ \mathbf{E}[H_{k,n}H_{k,m}^*] = \Omega_k \rho^{|n-m|}$

Subchannels User 1 $\gamma_{1,1}$ User 2 $\gamma_{2,3}$ User 3 $\gamma_{3,3}$

Best-*M* feedback for M = 1

- Degradation in throughput occurs due to:
 - instances of no user reporting a subchannel
 - loss in multi-user diversity
- Use subchannel correlation information to improve the throughput

System Model

- Single antenna OFDM cellular network with K users and N subchannels
- Rayleigh fading:
 - $H_{k,n} \sim \mathcal{CN}(0,\Omega_k)$ • $\gamma_{k,n} = |H_{k,n}|^2 \sim \operatorname{Exp}(\Omega_k)$

 $i_1(k) = 3$ $i_2(k) = 5$

Quantized feedback and M=1

- Best-M feedback
 - Reported indices: $\mathbf{x}_{k,M} = [i_1(k), \dots, i_M(k)]$
 - **Reported SNRs:** $s_{k,M} = [s(k, i_1(k)), ..., s(k, i_M(k))]$
- Discrete rate adaptation with rates $0 = R_1 < R_2 < \cdots < R_L$

MMSE Approach

- MMSE estimate of the SNR of an unreported subchannel is generated at the BS
- Given the best-M feedback $(\mathbf{s}_{k,M}, \mathbf{x}_{k,M})$, the MMSE estimate is the conditional mean: \bullet

 $\hat{\gamma}_{k,n} = \mathbf{E}\left[\gamma_{k,n} | \mathbf{s}_{k,M}, \mathbf{x}_{k,M}\right]$ $= \mathbf{E}\left[\gamma_{k,n} | \gamma_{k,u} = s(k,u), \forall u \in \mathbf{x}_{k,M}; \gamma_{k,v} < s(k,i_M(k)), \forall v \in \mathbf{x}_{k,M}^c\right]$

 $s(k, i_1(k)) = 10 \ s(k, i_2(k)) = 5$

0.2 0.4 0.8 0.6Correlation coefficient (p)

- MMSE approach with an appropriate rate backoff is near-optimal
- Loss with quantized feedback is negligible for $\rho \leq 0.45$

Conclusions

- Proposed approaches outperformed benchmark approaches without any additional feedback
- Throughput-optimal approach gives a fundamental limit on the achievable \bullet throughput
- MMSE approach is near-optimal with an appropriate rate backoff •