
Poster template by ResearchPosters.co.za

Verifying Data-race Freedom of Kernel APIs

in a Real Time Operating System
Suvam Mukherjee

Advisor : Prof. Deepak D’ Souza

Department of Computer Science and Automation, Indian Institute of Science

Some Identified Data-races

Problem Definition

• Examples of Kernel API Operations:

–Task Creation,

–Queue Creation,

– Inter-Task Communication, etc.

Application Programmer

Interface (API)

xTaskCreate

VTaskDelay

vTaskDelete

xQueueCreate

xTaskGetTickCount

uxTaskGetNumberOfTasks

uxTaskPriorityGet

vTaskPrioritySet

...

Interrupt Service Routines

 (ISR)

xTaskGetTickCountFromISR

xTaskResumeFromISR

xQueueIsEmptyFromISR

xQueueIsFullFromISR

uxQueueMessagesWaitingFrom

ISR

xQueueReceiveFromISR

xQueueSendFromISR

Tick

• Data-races

–Non atomic execution of critical sections

–Can cause system failures

–Difficult to reproduce and debug, as it

depends on specific interleavings

• Verification

 Guarantees for any application with an arbitrary

number of tasks (unlike bug-finding)

 Helps to create a version of the RTOS certified

against data races

Proposed Solution

1. Model control flow

2. Model accesses to shared data structures

3. Perform suitable abstractions

4. Model check a finite subset of reduced models

 Enhances scalability

 Preserves soundness guarantees

Reduced models

 Process 1: API

 Process 2: API

 Process 3: ISR

 Process 4: Tick Interrupt

 Process 5: Scheduler

 Model check 17 X 17 X 7 = 2023 such reduced models

Hard!

RAM used: > 39 GB

Running time: > 3 hours

States explored: 4.43 X 108

API ISR API

Experimental Evaluation

 Model checking M2, on a 128 GB RAM, 2 X (8 core Intel

Xeon Haswell 2.6 GHz) system

,

Problem RAM Running Time

M2 > 39 GB > 3 hours

M_red ~ 3GB ~1.85 hours

A Case Study: FreeRTOS

 One of the most popular real time operating systems

 Over 100,000 downloads in 2014 alone

 Uses a preemptive flag-based and priority-based scheduling

policy

 Rich set of APIs performing a wide variety of operations

 Creating tasks,

 Creating queues,

 Communication between tasks, and many more

 Presence of interrupts

 Specific set of functions which interrupt handlers can invoke

Critical

Section

Scheduler

Suspended

Preliminaries

API

Proposed

Concurrency

Model

Conclusion

 Proposed an approach to model and exhaustively check a
library of Kernel APIs in an RTOS for data races

 The proposed steps:

 Model control flow and access to shared data structures

 Perform suitable abstractions

 For scalability, model check a small number of reduced
models

 Concrete instantiation of our approach

 Modelled concurrency behaviors of FreeRTOS Kernel APIs
and ISRs

 Model checked 2023 reduced models in under 2 hours

 Detected 30 data races and classified them as harmful or
benign

 Used the detected races to create a certified race-free version
of FreeRTOS

Racing Data

Structure

Task 1 Task 2 Type

userQueue vQueueDelete xQueueSend H

userQueue vQueueDelete xQueueIsQueueFull

FromISR

H

userQueue xQueueSend xQueueReceiveFrom

ISR

H

userQueue vQueueDelete uxQueueMessagesWa

itingFromISR

H

userQueue vQueueDelete xQueueReceive H

userQueue vQueueDelete xQueueSendFromISR H

userQueue xQueueReceive xQueueSendFromISR H

userQueue vQueueDelete uxQueueMessagesWa

iting

H

userQueue xQueueSend xQueueSendFromISR H

userQueue vQueueDelete xQueueReceiveFrom

ISR

H

userQueue xQueueReceive xQueueReceiveFrom

ISR

H

userQueue vQueueDelete xQueueIsQueueEmpt

yFromISR

H

userQueue vQueueDelete vQueueDelete H

pxCurrentTCB xTaskCreate Tick B

pxCurrentTCB xTaskCreate xTaskCreate B

pxCurrentTCB vTaskResume Tick B

pxCurrentTCB vTaskResume xTaskCreate B

uxPriority xTaskCreate vTaskPrioritySet B

uxCurrentNum

berOfTasks

xTaskCreate uxTaskGetNumberOf

Tasks

B

 H : Harmful

 B : Benign

 Verify data-race freedom of a library of kernel
APIs.

 Case Study: FreeRTOS, a popular real-time
embedded operating system

 Find data-races

 Create data-race free version of FreeRTOS

 Carry out further instantiations, for example, OSEK,
java.util.concurrent etc.

 Identify general patterns which allow reductions to

model checking a finite set of “smaller” models

Assertion may be

Violated!

Example 1:

void vQueueDelete(xQueueHandle pxQueue)

{

 traceQUEUE_DELETE(pxQueue);

 vQueueUnregisterQueue(pxQueue);

 vPortFree(pxQueue->pxHead);

 vPortFree(pxQueue);

}

Example 2:

unsigned portBASE_TYPE uxQueueMessagesWaitingFromISR(

 const xQueueHandle pxQueue)

{

 unsigned portBASE_TYPE uxReturn;

 uxReturn = pxQueue->uxMessagesWaiting;

 return uxReturn;

} Interrupt

API

Bad Queue state

may be read!

Proof-Sketch

Future Directions

Any execution e with a data-race, of the model with n tasks,

can be reduced to an execution of some reduced model.

Moreover, the latter execution preserves the data-race.

ISR

API

