Suvam Mukherjee
Advisor : Prof. Deepak D’ Souza

Department of Computer Science and Automation, Indian Institute of Science

Problem Definition A Case Study: FreeRTOS Proof-Sketch

4 Verify data-race freedom of a library of kernel 0 One of the most popular real time operating systems
APIs. 0 Over 100,000 downloads in 2014 alone e
O Case Study: FreeRTOS, a popular real-time - Uses a preemptive flag-based and priority-based scheduling
embedded operating system policy

- Find data-races 1 Rich set of APIs performing a wide variety of operations ISR API

. i : = Creating tasks,

Create data-race free version of FreeRTOS « Creating queues,
= Communication between tasks, and many more 1 0 True/ \&TxLock or xRxLock

 Presence of interrupts

) (g
Preliminaries = Specific set of functions which interrupt handlers can invoke @ d

0 1
. . int QueueSend(QHandle pxQ, void *ItemToQueue) {
¢ ExampleS Of Kern6| API OperathnS API // Repeat till successful send
~ DISABLE_INTERRUPTS();
_ " if ('QueueFull(pxQ)) { // queue is not full
TaSk Creatlon’ // Copy data to queue
. CopyDataToQueue (pxQ, ItemToQueue) ;
_Queue Crea‘“on, C t | if (lempty(pxQ->WaitingToReceive)) { .
o rtical e SR SR Any execution e with a data-race, of the model with n tasks,
—Inter-Task Communication, etc. Section } can be reduced to an execution of some reduced model.
ENABLE_INTERRUPTS () ;
g RLEECH EREEL Moreover, the latter execution preserves the data-race.
Applicatiofn Programmer Interrupt Segi;{:e Routines __ ENABLE_INTERRUPTSO) ;
Interface (API
() () // Reach here when queue is full
xTaskCreate xTaskGetTickCountFromISR /++SchedulerSuspended; // Suspend scheduler
LockQueue(pxQ); // Lock queue
if (QueueFull(pxQ)) { // check if queue is still full
VIaskbelay xTaskResumeFromISR SChEdUler // move current task from ReadyTasksList to the
vTaskDelete Suspended<) // WaitingToSend list of pxQ
XQueuelsEmptyEFromISR " gn
UnlockQueue (pxQ) ; -
xQueueCreate \// Resume scheduler, yield if higher priority task woken Some Identlfled Data races
xQueuelsFullFromISR --SchedulerSuspended; // Resume scheduler
<TaskGetTickCount if () { // higher priority task woken
uxQueueMessagesWaitingFrom g YIELDQ);
uxTaskGetNumberOfTasks ISR } Racing Data Task 1 Task 2 Type
e xQueueReceiveFromISR Structure
o userQueue vQueueDelete XQueueSend H
vTaskPrioritySet s s endl fom Lok ISR void TaskIncrementTick() {
. if (SchedulerSuspended == 0) { userQueue vQueueDelete xQueuelsQueuelull H
Tick ++TickCount; FromISR
if(TickCount == 0) { ,
// swap delayed lists userQueue xQueueSend xQueueRecelvelrom H
° _ Temp = DelayedTaskList; ISR
Data races DelayedTaskList = OverflowDelayedTaskList; 0 0 Delet 0 M W H
. . =, . . OverflowDelavedTaskList = Tem g useryueue voueuebelete uxueue essages a
—Non atomic execution of critical sections R ’ g it inaE
Ry gFromISR
: } .
_Can Cause System fallures // Move tasks whose time-to—-awake is now USerQueue VQueueDelete XQueueRecelve H
o . // from DelayedTaskList to ReadyTasksList.
—DIffICU't to reproduce and debug, as it CheckDelayedTasks () ; userQueue vQueueDelete xQueueSendFromISR H
¥ PR - L, userQueue XQueueReceive xQueueSendFromISR H
depends on specific interleavings else {
++MissedTicks; userQueue vQueueDelete uxQueueMessagesWa H
Example 1; - iting
userQueue XQueueSend XQueueSendFromISR H
global int x = @; // shared variable API Scheduler userQueue vQueueDelete xQueueReceiveFrom H
ISR
void main() . .
{ , userQueue XQueueRecelve xQueueReceiveFrom H
sta rt(threadl); [down(api)}r ______ (sched enab) | | (sched susp) TSR
/start(threadz); : g I
\\\\\\$ | ""‘Gmwﬁﬂ[}ﬂmf]ﬁm@ﬁﬂ@] userQueue vQueueDelete xQueuifsQﬁi;fEmpt H
void threadl() void thread2() Y | ; : yErom
1 Y= x + 1: 1 Y= x + 1: [Wﬁﬂ)]—f————.l T :I userQueue vQueueDelete vQueueDelete H
= : = : - —
} } erupt 1 : : ->@MWMWMJ | pxCurrentTCB xTaskCreate Tick B
m . :
\\\\\ﬁjoﬂﬂtMEmﬂ);Z///// | [dwm@pﬂ<l __Li____l _____ | pxCurrentTCB xTaskCreate xTaskCreate B
join(thread2); Assertion may be >‘ ¢ @ pxCurrentTCB vTaskResume Tick B
aSSErt(X==2); —— iol dl i
} Violated! Proposed l a1 pxCurrentTCB vTaskResume xTaskCreate B
: ' ISR
ConCU(I’jl’elrle [up(ist) }___:_ _,,: : uxPriority xTaskCreate vTaskPrioritySet B
Mode !
Interrupt : ': uxCurrentNum xTaskCreate uxTaskGetNumberOf B
|
Example 2: ‘“‘“’ds[“:’) e - : '-JI--»-[down(isr)] berOfTasks Tasks
down(schsus)«<— — - ,
vold vQueueDelete (xQueueHandle pxQueue) | >1 : l H : Harmful
| : . i
{ g { —r] B : Benign
traceQUEUE DELETE (pxQueue); YMd[:qum<] ------- :
vQueueUnregisterQueue (pxQueue) ; |

vPortFree (pxQueue->pxHead);
vPortFree (pxQueue) ;

} AP

Conclusion

O Proposed an approach to model and exhaustively check a

unsigned portBASE TYPE uxQueueMessagesWaltingFromISR (
const xQueueHandle pxQueue)

Experimental Evaluation

{ | library of Kernel APIs in an RTOS for data races
unslgned portBASE TYPE uxReturn; _
uxReturn = pxQueue->uxMessagesWaiting; Model checking M2, on a 128 GB RAM, 2 X (8 core Intel
return uxReturn; ——__ Bad Queue state Xeon Haswell 2.6 GHz) system U The proposed steps:
} may be read! Interrupt = Model control flow and access to shared data structures
Running time: > ours = Perform suitable abstractions
= For scalability, model check a small number of reduced

e Verification models

1 Guarantees for any application with an arbitrary
number of tasks (unlike bug-finding)

1 Helps to create a version of the RTOS certified
against data races

U Concrete instantiation of our approach

= Modelled concurrency behaviors of FreeRTOS Kernel APIs
and ISRs

= Model checked 2023 reduced models in under 2 hours

A Reduced models E b[;?]tige;(r:]ted 30 data races and classified them as harmful or

= Process 1. API = Used the detected races to create a certified race-free version
= Process 2: API of FreeRTOS
= Process 3: ISR

= Process 4: Tick Interrupt
= Process 5: Scheduler

Proposed Solution

Future Directions
1. Model control flow 3 Model check 17 X 17 X 7 = 2023 such reduced models
2. Model accesses to shared data structures API APl ISR Q Carry out further instantiations, for example, OSEK,
3. Perform suitable abstractions R Java.util.concurrent etc.
. Problem RAM Running Time
4. Model check a finite subset of reduced models
M2 > 39 GB > 3 hours : : :
= Enhances scalability 4 Identify general patterns which allow reductions to
| PresEnEs SUNEEss GUETETEES sl ee - el “Lige alls model checking a finite set of “smaller” models

