
Poster template by ResearchPosters.co.za

Verifying Data-race Freedom of Kernel APIs

in a Real Time Operating System
Suvam Mukherjee

Advisor : Prof. Deepak D’ Souza

Department of Computer Science and Automation, Indian Institute of Science

Some Identified Data-races

Problem Definition

• Examples of Kernel API Operations:

–Task Creation,

–Queue Creation,

–Inter-Task Communication, etc.

Application Programmer

Interface (API)

xTaskCreate

VTaskDelay

vTaskDelete

xQueueCreate

xTaskGetTickCount

uxTaskGetNumberOfTasks

uxTaskPriorityGet

vTaskPrioritySet

...

Interrupt Service Routines

 (ISR)

xTaskGetTickCountFromISR

xTaskResumeFromISR

xQueueIsEmptyFromISR

xQueueIsFullFromISR

uxQueueMessagesWaitingFrom

ISR

xQueueReceiveFromISR

xQueueSendFromISR

Tick

• Data-races

–Non atomic execution of critical sections

–Can cause system failures

–Difficult to reproduce and debug, as it

depends on specific interleavings

• Verification

 Guarantees for any application with an arbitrary

number of tasks (unlike bug-finding)

 Helps to create a version of the RTOS certified

against data races

Proposed Solution

1. Model control flow

2. Model accesses to shared data structures

3. Perform suitable abstractions

4. Model check a finite subset of reduced models

 Enhances scalability

 Preserves soundness guarantees

Reduced models

 Process 1: API

 Process 2: API

 Process 3: ISR

 Process 4: Tick Interrupt

 Process 5: Scheduler

 Model check 17 X 17 X 7 = 2023 such reduced models

Hard!

RAM used: > 39 GB

Running time: > 3 hours

States explored: 4.43 X 108

API ISR API

Experimental Evaluation

 Model checking M2, on a 128 GB RAM, 2 X (8 core Intel

Xeon Haswell 2.6 GHz) system

,

Problem RAM Running Time

M2 > 39 GB > 3 hours

M_red ~ 3GB ~1.85 hours

A Case Study: FreeRTOS

 One of the most popular real time operating systems

 Over 100,000 downloads in 2014 alone

 Uses a preemptive flag-based and priority-based scheduling

policy

 Rich set of APIs performing a wide variety of operations

 Creating tasks,

 Creating queues,

 Communication between tasks, and many more

 Presence of interrupts

 Specific set of functions which interrupt handlers can invoke

Critical

Section

Scheduler

Suspended

Preliminaries

API

Proposed

Concurrency

Model

Conclusion

 Proposed an approach to model and exhaustively check a
library of Kernel APIs in an RTOS for data races

 The proposed steps:

 Model control flow and access to shared data structures

 Perform suitable abstractions

 For scalability, model check a small number of reduced
models

 Concrete instantiation of our approach

 Modelled concurrency behaviors of FreeRTOS Kernel APIs
and ISRs

 Model checked 2023 reduced models in under 2 hours

 Detected 30 data races and classified them as harmful or
benign

 Used the detected races to create a certified race-free version
of FreeRTOS

Racing Data

Structure

Task 1 Task 2 Type

userQueue vQueueDelete xQueueSend H

userQueue vQueueDelete xQueueIsQueueFull

FromISR

H

userQueue xQueueSend xQueueReceiveFrom

ISR

H

userQueue vQueueDelete uxQueueMessagesWa

itingFromISR

H

userQueue vQueueDelete xQueueReceive H

userQueue vQueueDelete xQueueSendFromISR H

userQueue xQueueReceive xQueueSendFromISR H

userQueue vQueueDelete uxQueueMessagesWa

iting

H

userQueue xQueueSend xQueueSendFromISR H

userQueue vQueueDelete xQueueReceiveFrom

ISR

H

userQueue xQueueReceive xQueueReceiveFrom

ISR

H

userQueue vQueueDelete xQueueIsQueueEmpt

yFromISR

H

userQueue vQueueDelete vQueueDelete H

pxCurrentTCB xTaskCreate Tick B

pxCurrentTCB xTaskCreate xTaskCreate B

pxCurrentTCB vTaskResume Tick B

pxCurrentTCB vTaskResume xTaskCreate B

uxPriority xTaskCreate vTaskPrioritySet B

uxCurrentNum

berOfTasks

xTaskCreate uxTaskGetNumberOf

Tasks

B

 H : Harmful

 B : Benign

 Verify data-race freedom of a library of kernel
APIs.

 Case Study: FreeRTOS, a popular real-time
embedded operating system

 Find data-races

 Create data-race free version of FreeRTOS

 Carry out further instantiations, for example, OSEK,
java.util.concurrent etc.

 Identify general patterns which allow reductions to

model checking a finite set of “smaller” models

Assertion may be

Violated!

Example 1:

void vQueueDelete(xQueueHandle pxQueue)

{

 traceQUEUE_DELETE(pxQueue);

 vQueueUnregisterQueue(pxQueue);

 vPortFree(pxQueue->pxHead);

 vPortFree(pxQueue);

}

Example 2:

unsigned portBASE_TYPE uxQueueMessagesWaitingFromISR(

 const xQueueHandle pxQueue)

{

 unsigned portBASE_TYPE uxReturn;

 uxReturn = pxQueue->uxMessagesWaiting;

 return uxReturn;

} Interrupt

API

Bad Queue state

may be read!

Proof-Sketch

Future Directions

Any execution e with a data-race, of the model with n tasks,

can be reduced to an execution of some reduced model.

Moreover, the latter execution preserves the data-race.

ISR

API

