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Introduction
We describe a decision-theoretic model for visual search. We
first model visual search as an active sequential hypothesis test-
ing problem. Our analysis suggests an appropriate neuronal dis-
similarity index which correlates strongly with the reciprocal of
search times. We will then consider a scenario where the subject
has to find an oddball image, but without any prior knowledge of
the oddball and distractor images. We model this scenario as one
of detecting an odd Poisson point process having a rate different
from the common rate of the others. The revised model suggests
a new neuronal dissimilarity index. The new dissimilarity index
is also strongly correlated with the behavioural data.

We thus propose a framework for connecting the perceptual
distances in the neuronal and the behavioural spaces. Our frame-
work can possibly be used to analyze the connection between
the neuronal space and the behavioural space for various other
behavioural tasks.

Prior Work
We invite the reader to participate in the following visual search
tasks. There are two search tasks below. Find the oddball image
in each of the two configurations. Based on the time taken for
each of the tasks, identify which of the two is easier.

Among the two search tasks above, most subjects find the task
on the left the easier, and the task on the right tougher. Visual
search performance, as measured by the time taken to find the
oddball image, should depend on the “similarity” of the two im-
ages. One has the natural hypothesis:

(H) The more “dissimilar” the two images, the shorter
the time taken to find the oddball image.

How does one quantify the “dissimilarity”? Sripati and Olson
[1] proposed the L1 distance between the average neuronal firing
rates elicited by the individual images as a measure of “dissim-
ilarity”. They found very high correlation between the inverse
of the reaction times in the oddball detection task and their pro-
posed L1 distance metric. But why L1? Can we come up with a
model for the visual search task, which would suggest an appro-
priate neuronal dissimilarity index?

Components of the visual search task
• The task is a sequential hypothesis testing problem - hypothe-

ses correspond to the odd image and the location of the odd
image.

•Observation: The neuronal firing patterns generated in the
brain.

•Actions: The subject has the ability to focus his attention on
any location of his choice.

• Changing your focus of attention incurs a cost.

• Can be modelled as an active sequential hypothesis testing
problem (ASHT).

Mathematical Modeling - ASHT

Known oddball and distractor images model
•Hi, i = 1, 2, . . . ,M - the M hypotheses.

• A - the set of all possible actions, |A| = K <∞.

• (Xn)n≥1, (An)n≥1 - the observation and action processes. In
our visual search scenario Xn, a vector, corresponds to the
number of spikes observed in each tapped neuron at time slot
n.

• qai - conditional probability density function of observation,
given action A = a and hypothesis H = Hi. In our visual
search scenario, qai corresponds to a vector Poisson distribu-
tion with corresponding means.

•D(qai ‖q
a
j ) := E

[
log
(
qai
qaj

)
|H = i

]
- relative entropy between

the observation densities.

• Policy - π = (π1, π2, . . .)

– πn : Xn ×An→ {(stop, d), (continue, λ)}
d ∈ {1, 2, . . . ,M} and λ ∈ P(A)

Let Pi andEi denote the conditional distribution and conditional
expectation, conditioned on hypothesis Hi.

• Policies of interest. For a given 0 < α < 1

Π(α) := {π : Pπi (d 6= i) ≤ α, ∀ i} . (1)

• Stopping time under policy π - τ (π).

• Switching cost - g(a, a′) ≥ 0 ∀a, a′ ∈ A, g(a, a) = 0 ∀a ∈
A
• Total cost -

C(π) := τ (π) +

τ (π)−1∑
l=1

g(Al, Al+1).

ASHT - Asymptotically Optimal Policies
Let

λi := arg max
λ∈P(A)

min
j 6=i

∑
a∈A

λ(a)D(qai ‖q
a
j )

Di = max
λ∈P(A)

min
j 6=i

∑
a∈A

λ(a)D(qai ‖q
a
j )

Let Zij(n) denote the log-likelihood ratio (LLR) process of
hypothesis Hi with respect to hypothesis Hj. Zi(n) =
minj 6=iZij(n).
Policy Sluggish Procedure A: πSA(L, η)
Fix L > 0, 0 < η ≤ 1.
At time n:

• Let θ(n) = arg maxiZi(n). Ties are resolved uniformly at
random.

• If Zθ(n),j(n) < log((M − 1)L) for some j 6= θ(n) then next
action An+1 is chosen as follows.

– Generate Un+1, a Bernoulli(η) random variable, indepen-
dent of all other random variables.

– If Un+1 = 0, then An+1 = An.
– If Un+1 = 1, then generate An+1 according to distribution
λθ(n).

• If Zθ(n),j(n) ≥ log (M − 1)L, for all j 6= θ(n), then the test
retires and declares Hθ(n) as the true hypothesis.

Theorem. Consider the sequence of probability of false detec-
tion constraints (α(n))n≥1, such that limn→∞α(n) = 0. Then,
for each n, the policy πSA(Ln, η) with logLn = − log alpha(n)

belongs to Π(α(n)). Furthermore, for each i,

lim
n↑∞

inf
π∈Π(α(n))

Ei [C(π)]

logLn
= lim
η↓0

lim
n↑∞

Ei [C(πSA(Ln, η))]

logLn
=

1

Di
.

Thus ASHT suggests Di as a neuronal dissimilarity index. Di
normalised by number of neurons is denoted by D̃.

Unknown oddball and distractor images model -
Learning based model
•What if we did not know the images that are going to appear?

What if the only information the subject has is that there is
one odd image in the group?

• In the neuronal space, it translates to finding the image with a
firing rate different from the common rate of the others.

•We cast this as one of detecting an multi-dimensional Poisson
point process having a rate different from that of the others.

Basic Notation

•K - Number of Poisson point processes. One of which one
has a rate different from the others.

•H - Index of the odd process.

•R1 - Rate of the odd process (unknown).

•R2 - Rate of the non-odd processes (unknown).

•Ψ = (H,R1, R2) specifies the configuration.

Let

f̂ (Xn, An|H = j) := max
Ψ:H=j

f (Xn, An|Ψ) ,

and let

f (Xn, An|H = i)

:=

∫
f (Xn, An|Ψ = (i, θ1, θ2)) f1,1,1,1((i, θ1, θ2)|H = i)dθ1dθ2.

The modified GLR is defined as

Zij(n) := log

(
f (Xn, An|H = i)

f̂ (Xn, An|H = j)

)

Note that the numerator is an averaged likelihood under H = i,
averaged with respect to an artificial prior, and denominator is a
maximum likelihood under H = j. Let

Zi(n) := min
j 6=i

Zij(n)

denote the modified GLR with respect to i for the nearest alter-
nate.

Policy: Modified GLRT (πM (L))
Fix L ≥ 1.
At time n (end of slot n):

• Let i∗(n) = arg maxiZi(n), the index with the largest mod-
ified GLR after n time slots. Ties are resolved uniformly at
random.

• If Zi∗(n)(n) < log ((K − 1)L),
thenAn+1 is chosen according to λ∗(i∗(n), θ̂n

i∗(n)1
, θ̂n
i∗(n)2

),
i.e.,

Pr(An+1 = j|Xn, An) = λ∗(i∗(n), θ̂ni∗(n)1, θ̂
n
i∗(n)2)(j).

• If Zi∗(n)(n) ≥ log ((K − 1)L) then the test retires and de-
clares i∗(n) as the true hypothesis.

Theorem. Consider K homogeneous Poisson point processes
with configuration Ψ = (i, R1, R2). Let (α(n))n≥1 be the se-
quence of probability of false detection constraint, such that
limn→∞α(n) = 0. Then, for each n, the policy πM (Ln) with
log(Ln) = − log(α(n)) belongs to Π(α(n)). Furthermore,

lim inf
n→∞

inf
π∈Π(α(n))

E [τ (π))|Ψ]

log(Ln)
= lim sup

n→∞

E [τ (πM (Ln)))|Ψ]

log(Ln)
(2)

=
1

D∗(i, R1, R2)
. (3)

The new model suggests D∗ as a possible neuronal dissimilar-
ity index.

Results
An ideal neuronal dissimilarity index diff (k, l) would satisfy

E[Stopping Time]diff (k, l) = constant

for all image pairs (k, l). Then, a performance measure for
a dissimilarity index would be its performance in an equal-
ity of means test. We now provide the statistics obatined
in two equality of means tests: One-sided ANOVA and
log(Arith. Mean/ Geo. Mean). Lesser the statistics, better the
performance.

[ht]
diff ANOVA statistic ANOVA p-values log(AM/GM)

D̃ 06.30 9.35× 10−19 0.0200

KL 06.68 2.88× 10−20 0.0211

Chernoff 06.74 1.61× 10−20 0.0252

L1 24.00 3.42× 10−87 0.0678

D∗ 06.34 6.93× 10−19 0.0233

Conclusions
• Framed the visual search problem as an Active Sequential Hy-

pothesis Testing problem.

•ASHT suggests a neuronal dissimilarity D̃ index which ex-
plains the behavioural data as good as or better than L1.

•Obtained D∗ as an index when there is no prior knowledge of
the image pairs.

• D̃ outperform D∗, though marginally, in all tests.
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