

Motivation

• Social recommendation of products and services is very useful for enlarging the market share.

- Individuals are incentivized to recommend services to their friends and acquaintances.
- Uber, Lyft give free rides for recommending the app, Living Social gives discounts if recommendations lead to purchase.
- × Referrals come at a big price. Giving referral incentives to everyone may not be a good idea.
- \diamond Provide referral incentives to only a few individuals that are capable of spreading the campaign.

The Problem and Proposed Solution

Marketing campaign for a freemium service. • Goal : Maximize registrations.

- Maximize registrations (campaign size) for a given cost budget.
- Achieve a given marketing target with minimum cost.

Solution : Probabilistic Incentivization

- Incentivize individuals with degree k with probability $\phi(k)$
- Incentives provided to individuals for recommending service to friends.
- Provide incentives only if they register.

Campaign Spreading Model

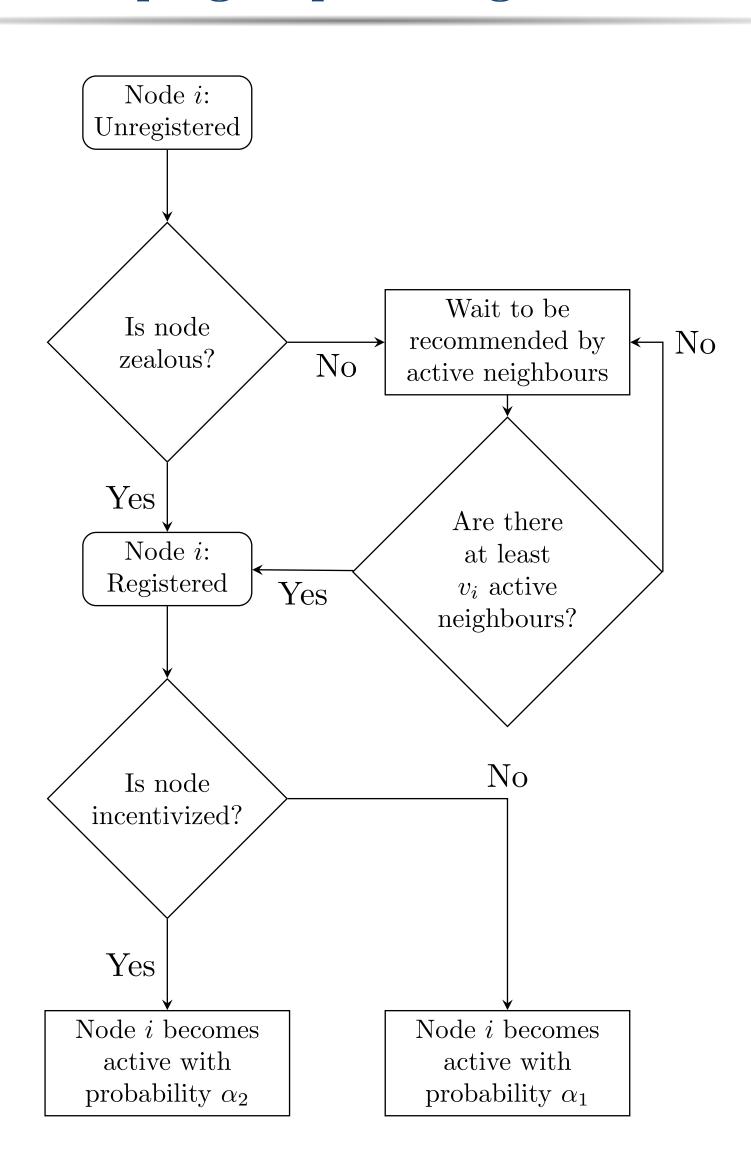


Figure 1: Flow chart denoting the various stages of a node; v_i denotes a deterministic *threshold* of node *i*, and α_1 and α_2 are the probability of activation of the *incentivized* and *non-incentivized* nodes, respectively.

Network Assumptions

• Uncorrelated network • Probability that an edge exists between two randomly chosen nodes is independent of the properties (such as degree) of the nodes.

Council Cou

Incentivized Campaigning in Social Networks

Bhushan Kotnis, Advisor: Prof. Joy Kuri

Department of Electronic Systems Engineering

Optimization Problem Formulation and Main Results Problem Formulation

$$\begin{array}{ll} \min_{\mathbf{0} \le \boldsymbol{\phi} \le \mathbf{1}} & \sum_{k \ge 1} c_k \cdot p(k) \cdot \phi(k) \cdot s_k(q) \\ \text{Subject to:} \\ & s(q) \ge \gamma \\ & q = \frac{1}{\overline{d}} \sum_{k \ge 1} k \cdot p(k) \cdot \phi(k) \end{array}$$

Size of the campaign

- s(q) is the probability that a randomly chosen node registers for a campaign. • $s_k(q)$ is the probability that a node with k neighbors registers for the campaign • p(k) is the degree distribution.
- \overline{d} is the mean degree.
- $s(q) = g(q, u)|_{u=u_q}$ and $s_k(q) = g_k(q, u)|_{u=u_q}$ where u_q is the solution of the fixed point equation u = g(q, u)

$$g(q, u) = \sum_{k \ge 1} p(k) \sum_{m \ge 1} p_{th}(m|k) \sum_{k_2=0}^{k} \hat{p}(k_2|k) \cdot P[X_{k_2} + Y_{k-k_2} \ge m] + \sum_{k \ge 1} p(k) \cdot p_{th}(0|k)$$

$$g_k(q, u) = \sum_{m \ge 1} p_{th}(m|k) \sum_{k_2=0}^{k} \hat{p}(k_2|k) \cdot P[X_{k_2} + Y_{k-k_2} \ge m] + p_{th}(0|k)$$

where $X_{k_2} \sim Bin(k_2, \alpha_2 u)$ and $Y_{k-k_2} \sim Bin(k - k_2, \alpha_1 u)$

Proposition

If
$$\alpha_2 > \alpha_1$$
, then $\frac{\partial s(q)}{\partial q} > 0$

Simplified Optimization Problems

$$\min_{\substack{\mathbf{0} \le \boldsymbol{\phi} \le \mathbf{1} \\ \mathbf{Subject to:}}} \sum_{k \ge 1} c_k \cdot p(k) \cdot \phi(k) \cdot s_k(q)$$

Subject to:

$$q \ge q_{\gamma}$$
$$q = \frac{1}{\overline{d}} \sum_{k \ge 1} k \cdot p(k) \cdot \phi(k)$$

Indian Institute of Science, Bangalore

$$\max_{\substack{0 \le \phi \le 1}} s(q)$$

Subject to:
$$\sum_{k \ge 1} c_k \cdot p(k) \cdot \phi(k) \cdot s_k(q) \le \overline{c}$$
$$q = \frac{1}{\overline{d}} \sum_{k \ge 1} k \cdot p(k) \cdot \phi(k)$$

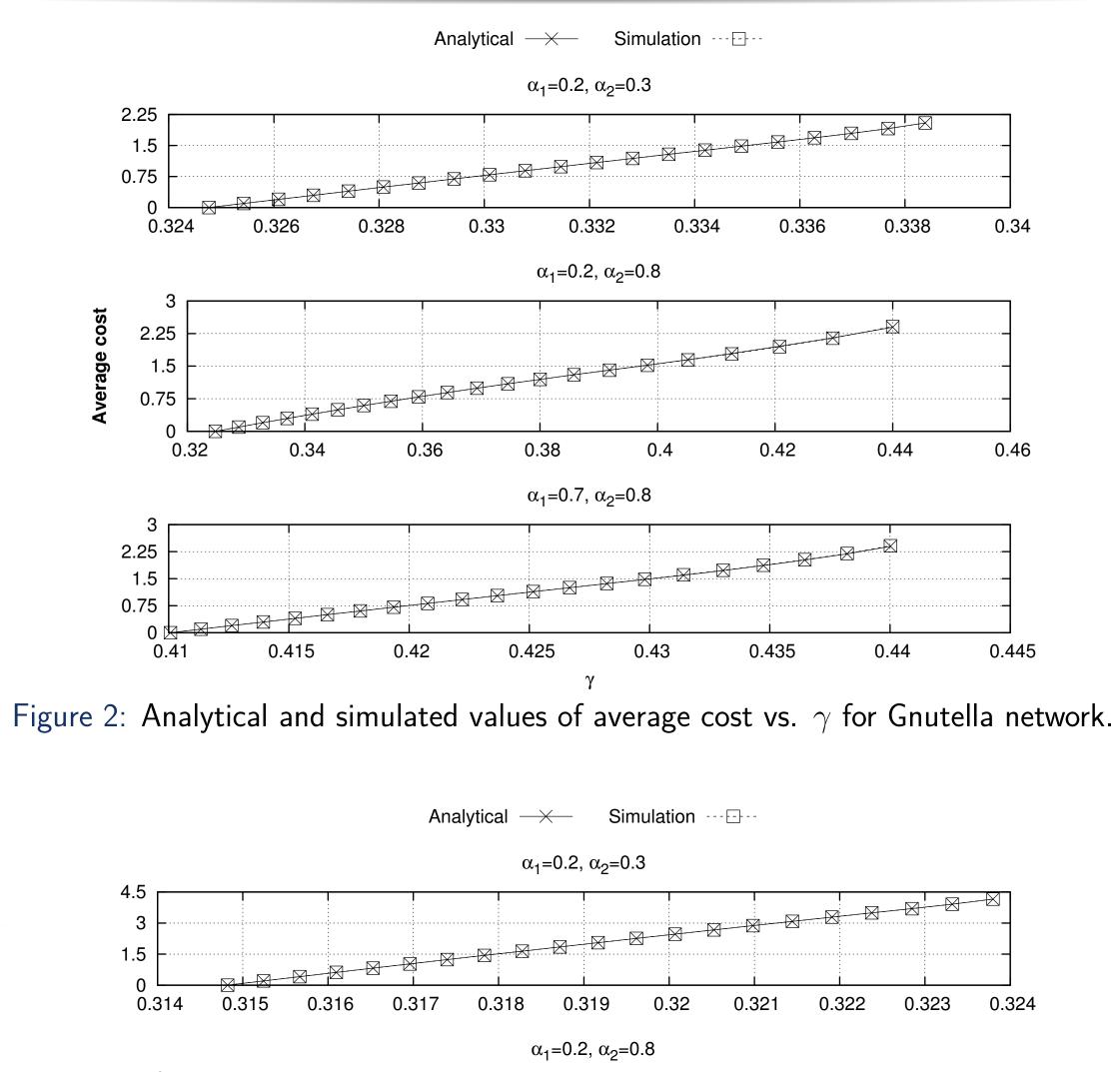

Proposition

If $\alpha_2 > \alpha_1$, then for all $k \ge 1$, $\frac{\partial s_k(q)}{\partial q} \ge 0$

$$\max_{\substack{0 \le \phi \le 1}} q \qquad (1)$$
Figure 3
Subject to:
$$\sum_{k \ge 1} c_k \cdot p(k) \cdot \phi(k) \cdot s_k(q) \le \overline{c} \qquad (3)$$

$$q = \frac{1}{\overline{d}} \sum_{k \ge 1} k \cdot p(k) \cdot \phi(k) \qquad (4) \qquad (4)$$

 \checkmark Showed that our analytical results are applicable in real world social networks



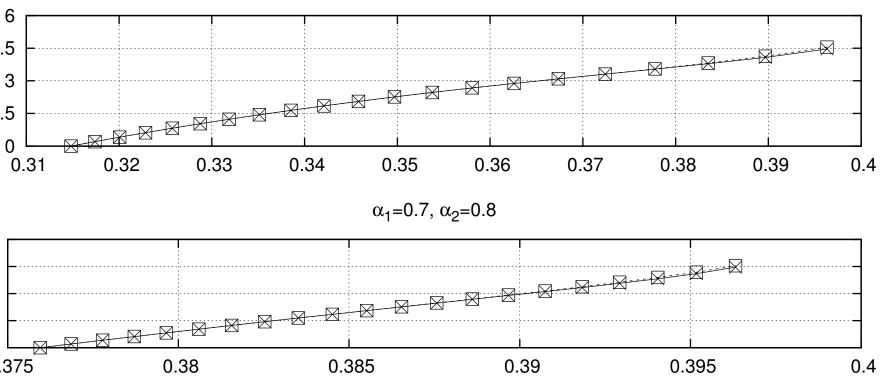

Results **Real World Networks**

Table 1: Simple Parameters of the two real-world networks used for simulations.

	Network A	Network B
Source	p2p-Gnutella08	Hamsterster
Network category	Peer-to-peer	Social
Nodes	6301	2426
Edges	20777	16631
Maximum degree	273	97
Average degree	6.59	13.71
Number of triangles	2383	53265
Clustering coefficient	0.01	0.51
Connected components	2	148

Numerical Validation

re 3: Analytical and simulated values of average cost vs. γ for Hamsterster

Conclusion

tudied the problem of campaigning in social networks (for narketing a free or freemium service) by offering incentives for eferrals.

 \checkmark Used results from reliability theory that enabled us to solve the optimization problems with simple algorithms