

Frequency Domain CMOS Capacitance Interface Javed S Gaggatur, Gaurab Banerjee

Analog and RF Systems Laboratory (ARSL), Indian Institute of Science, Bangalore

MOTIVATION

- **4** Emerging applications in areas Internet of Things, Biomedical implants and Wireless and Autonomous Sensors – demand systems having integrated, linear and multi-sensor interfaces.
- **4** Low value capacitance measurement helps in Industrial, Automotive, and Defence systems
- **4** Medical / Industrial diagnostic capabilities
- **4** Compatibility to standard CMOS process allows for scalable design process and higher capacitance stability

EXPERIMENTAL SETUP

- **4** Sensitivity reconfigurability
- **4** Our Work aims to create and an **integrated sensor interface** that operate at the highest possible sensitivity scalable to function reliably to measure capacitance.

Proposed Solution for Sensor Interface

Challenges in Integrated Sensor Interface **A Reconfigurable High Sensitivity and Linearity 4** Dynamic range matching of ADC input and sensor signal output **4** Low interference **4** Multi-sensor Low Cost / Area

SASI: Smart Analog Sensor Interface

FREQUENCY DOMAIN CAPACITANCE MEASUREMENT CIRCUIT

Figure: Measurement Flow

SENSOR SENSOR II SCAN CHAIN CAP ARRAY OSCILLAEOR	
REFERENCE REFERENCE DIVIDER	

Figure: Die photomicrograph with key layout blocks highlighted

TUNABLE SENSITIVITY AND ADJUSTABLE DYNAMIC RANGE

0.55

() 0.45

10.4

0.35

0.25

Time Sensitivity

Figure: Oscillation Frequency and its sensitivity to capacitance

Overall System Sensitivity

Sensitivity Reconfigurable **Parameters**

Performance of Reconfigurable

Figure: Charge Pump voltage sensitivity and effect of parameter selection

Sensor Interface

	I _{CP}	10		μΑ	50	50 μΑ		120 μA	
		D=:	1	D=10	D=1	D=1	0	D=1	D=10
	N=4	0.1	5	1.5	0.77	7.6	5	1.8	18
	N=10	0.8	3	8.25	4.2	42	$\mathbf{>}$	9.9	99
	N=16	2.04	4	20.4	10.2	102	2	24.48	244.8
.ow Sensitivity; arge Capacitance			ſ	Moderate Sensitivity; Tens of femto farads			-	High Sen Tens of at	sitivity; to farad

Figure: Sensor capacitance integrated Oscillator

PERFORMANCE SUMMARY

Voltage = 1.2V Capacitance Range = 0 - 100fF Low Power [2-6] 0.7mW Lowest Area [2-6] 0.17mm²! Highest Sensitivity [1-7] 244.8 mV/fF !!

	Target	Sensing Frequency	Technology	Area	Power Consumption	Sensitivity
[1]	Capacitive Sensing	1 Hz - 1 GHz	0.18 μ m CMOS	$3.9 \ge 3.83 \ mm^2$	30μ W/channel	164pA/aF ∮
[2]	Capacitive measurements for DNA detection	DC	$0.5 \ \mu m \ CMOS$	$6.4 \ge 4.5 \ mm^2$	NA	NA
[3]	Chemicals Permittivity detection	DC	0.18 μ m CMOS	NA	NA	530 mV/fF
[4]	Impedance Spectroscopy and DNA detection	10 Hz - 50 MHz	0.35 μm CMOS	$2 \ge 2 mm^2$	84.8 mW	330 pA (BW = 10 Hz)
[5]	Humidity detection	DC	0.6 μ m CMOS	$4.8 \ mm^2$	1.19 mW	30 fF / % RH (BW = 1 kHz)
[6]	Capacitive Sensing	0.5 - 500 kHz	$0.35 \ \mu m CMOS$	$0.94 \text{ x} 1.08 \ mm^2$	6.4 mW	NA
[7]	Capacitive Sensing	DC - 1 kHz	0.18 μ m CMOS	$0.028 \ mm^2$	165 μ W/pixel	200 mV/fF
This	Capacitive Sensing	9 MHz - 24 MHz	$0.13 \ \mu m CMOS$	0.7 x 1.25 mm ²	0.7 mW	244.8 mV/fF [‡]
work						4.2 mV/fF [†]

⁹ derived

[‡] With the tuning variables set at $[I_c p, N, D] = [120\mu A, 16, 10]$ [†] With the tuning variables set at $[I_c p, N, D] = [50\mu A, 10, 1]$

(pF) measurements

(fF) measurements (aF) measurement

Measured CV Characteristics of the different dynamic ranges

[1] Sonkusale *Sensors* Oct, 2004 [2] Stagni *JSSC* Dec, 2006 [3] Ghafar-Zadeh *TBioCAS* Dec, 2007 [4] Manickam *TBioCAS* Dec, 2010 [5] Cirmirakis *Sensors* Oct, 2011 [6] Chiang Sensors Oct, 2007 [7] Prakash TCAS-I May, 2009 [8] Javed GS ISCAS May 2016

ACKNOWLEDGEMENTS

We thank the Department of Electronics and Information Technology (DeitY), Ministry of Communication and Information Technology (MCIT), Government of India for funding this research.

	Contact Information
Web:	http://www.ece.iisc.ernet.in/~arsl
E-mail:	<u>gsjaved@ece.iisc.ernet.in</u>
Address:	Analog and RF Systems Laboratory (ARSL), Indian Institute of Science, Bangalore

www.PosterPresentations.com