

Practice Thinking

1.56

1.55

1.79

INVESTIGATIONS OF 2D MATERIAL METAL CONTACT USING DENSITY FUNCTIONAL THEORY

2D MATERIALS

TABLE I: Strain applied in all the interfaces, Calculated equilibrium distances (z-direction) corresponding to minimum binding energy(BE), BE values, Dirac Cone shift only applicable to physisorped interfaces involving graphene, Schottky Barrier Heights(p-type and n-type) corresponding to interfaces with MoS₂, Band gap (Eg) values for MoS₂-metal interface and MoS₂-graphene-metal interface calculated by adding p-type SBH and n-type SBH

System	MoS ₂ - G	G-Au	G-Pt	G-Ti	G-Ag	G-Ru	MoS ₂ - Au	MoS ₂ - Pt	MoS ₂ - Ti	MoS ₂ - Ag	MoS ₂ - Ru	MoS ₂ - G-Au	MoS ₂ - G-Pt	MoS ₂ - G-Ti	MoS ₂ - G-Ag	MoS ₂ - G-Ru
Strain(%)	1.8	1.8	1.2	2.8	1.5	0.5	0.38	0.38	1.1	0.26	1.3	1.8	1.8	1.8	1.8	1.8
d(Å)	3.3	3.3	3.2	2.1	3.2	2.2	2.7	2.3	2.2	2.5	2.2	d1=3.3 d2=3.3	d1=3.3 d2=3.2	d1=3.3 d2=2.1	d1=3.3 d2=3.2	d1=3.3 d2=2.2
BE(eV)	-1.86	-2.5	-3	-19	-2.15	-5	-5.9	-9.55	-17.5	-6.5	-14.8	-4.5	-5.16	-23.81	-4.3	-12.43
ΔE_F	-0.02	0.1	0.28	_	-0.423	_	_	_	_	_	_	-0.106	0.127	_	-0.057	_
n-SBH	0.65	_	_	_	_	_	0.64	0.81	0.382	0.373	0.56	0.663	0.916	0.26	0.25	0.018

- Metal Sem Interlayer Distance (d)

- Fails when the interfacial chemistry come into picture.
- More governed by the charge transfer at the interface.
- SBH is given by $n-SBH = E_c-E_F$, $p-SBH = E_F-E_V$

SBH MODIFICATION USING GRAPHENE INSERTED MOS₂-METAL CONTACT

CHARGE DENSITY DIFFERENCE

INTERFACE GEOMETRY

0

U

ccicicaciacia

celelectelelele

eferciencience

Graphene-Gold

60 60 60 60 6

d=3.3 Å

