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Introduction
We consider the following separable convex optimization problem
with linear inequality constraints. The problem arises in a wide va-
riety of resource allocation settings. Let wi : R → R, i = 1, 2, · · · , n
be strictly concave and continuously differentiable functions. We wish
to minimize a separable objective function W : Rn→ R as in

Problem Π :

Maximize W (x) :=

n∑
i=1

wi(xi)

subject to xi ≥ 0 i = 1, 2, · · · , n,
x1 ≤ α1,

x1 + x2 ≤ α1 + α2,
... ≤ ...

x1 + x2 + · · · + xn = α1 + α2 + · · · + αn.

• αi ≥ 0 for i = 1, 2, · · · , n.
• The constraint set of problem Π is called Linear ascending con-

straints. Let F denote the constraint set.

Inventory Management
We give a simple example in inventory management to motivate the
need to study problem Π.
•A single good produced at n time instants.

– xi is the quantity of good produced at ith instant.
–wi(xi) is the convex cost function.
– αi is the consumption at ith instant.
– Demand has to be met at each instant.

At time 1 : x1 ≥ α1

At time 2 : x1 − α1 + x2 ≥ α2.

=⇒ x1 + x2 ≥ α1 + α2.
...

At time n : x1 + x2 + · · · + xn = α1 + α2 + · · · + αn.

•Minimize total production cost :
∑n
i=1wi(xi)

In addition to the applications in operations research, problem Π arises
in certain resource allocation problems in wireless communications.

The algorithms that solve problem Π fall under two broad categories.
•Greedy algorithms: At each step, the variable that gives the largest

increase in objective function is incremented.
•Decomposition algorithms: Decomposes the optimization problem

into simpler sub problems.
We now give a decomposition algorithm that solves problem Π.

A Decomposition Algorithm
•Decompose problem Π into single sum constraint problems.

SubProblem(l, u) : maximize
u∑

i=l+1

wi(xi)

u∑
i=l+1

xi =

u∑
i=l+1

αi.

• There exists indices 0 = s(0) < s(1) < s(2) < · · · < s(p) = n such
that the solution to Sub problem(s(k), s(k+ 1)), k = 0, 1, · · · , p−1
gives the solution to problem Π.

• Complexity
– Complexity to find s(1), s(2), · · · , s(p) is O(n2).
– Complexity of the algorithm is atleast O(n2).
– The complexity of the fastest known algorithm that solves prob-

lem Π is O(n log n).

Network Utility Maximization

Network Structure
•A network with a special structure.
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Figure 1: Network structure

• n users sending data across the network.

•User i derives a utility wi(xi).

•Maximize sum utility subject to the flow constraints of the network.

System((xi);W,F ) : Maximize
n∑
i=1

wi(xi)

(xi) ∈ F.

•wi, i = 1, 2, · · · , n are strictly concave, increasing and continuously
differentiable functions.

Kelly Decomposition
•Distributed Optimization

– The network does not know the utility functions.
– Users do not know the network structure.

•Kelly decomposition (Kelly et al.)

– Decomposes the system problem into n user problems and a net-
work problem.
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Figure 2: Kelly Decomposition

• The network sets λi, the cost per unit rate for user i.

• Let pi be the amount user i is willing to pay.

•User i expects a rate pi
λi

.

• Choose pi to maximize the net utility of user i.

User(pi;λi) : Maximize wi(
pi
λi

)− pi
pi ≥ 0.

• Based on (pi), the network allocates rates in a proportionally fair
manner.

Network((xi); (pi), F ) : Maximize
n∑
i=1

pi · log xi

(xi) ∈ F.

• Let (xi) maximize the network problem.

• The updated cost per unit rate, λi = pi
xi

.

Algorithm
•An iterative method
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T(x)
• The optimal solution to the system problem, x?, satisfies

x? = T (x?).

• T (x) has multiple fixed points.

• Rate update

x(k+1) = (1− a(k)) · x(k) + a(k) · T (x(k)).

• Take a(k) = 1
k .

Proof of Convergence

• x(k) approximates the trajectory of the following ODE.

ẋ(t) = T (x)− x.

• The equilibrium points of the ODE are the fixed points of T (x).

• x(t) converges to an equilibrium point shown via Lyapunov theory.

•W (x) is the Lyapunov function.

• x(t)→ x?, hence x(k)→ x?.

A Geometric Solution to the Network Problem

• Consider the network problem for the case n = 4.

• Let t0 be the origin and t1, t2, t3, t4 be points in R2 with ti located
at (

∑i
j=1αj,

∑i
j=1 pj).

• The solution to the network problem is obtained from the ’concave
cover’ of the points t1, t2, t3 and t4.

• See figure 3. The piece-wise linear function formed by the line seg-
ments t0 − t1, t1 − t3 and t3 − t4 is the concave cover of the points
t1, t2, t3 and t4.
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Figure 3: The concave cover

• λ1 = Slope of t0 − t1,
λ2 = λ3 = Slope of t1 − t3,
λ4 = Slope of t3 − t4.

• xi = pi
λi
, i = 1, 2, 3 and 4.

• String algorithm (Muckstadt et al.) finds the concave cover inO(n)
steps.

Conclusion

In this work, we first proposed a centralized algorithm that solves
problem Π. The algorithm solves the optimization problem by de-
composing it into single constraint problems. The complexity of the
decomposition technique is atleastO(n2). Faster algorithms exist that
solves problem Π in O(n log n) steps. In the second part, we solve
problem Π in a distributed setting using Kelly decomposition. The
distributed algorithm is efficient due to String algorithm that solves
the network problem in O(n) steps. The algorithm compares favor-
ably to the algorithm of Kelly-Mauloo-Tan (KMT) in certain aspects.
Although KMT uses Kelly decomposition, it does not solve the net-
work problem in each step. As a result, the rates allocated at inter-
mediate steps may not be feasible. This may also result in a slower
convergence of the KMT algorithm.
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