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Introduction

We consider the following separable convex optimization problem
with linear inequality constraints. The problem arises in a wide va-
riety of resource allocation settings. Let w; : R = R,z =1,2,--- ., n
be strictly concave and continuously differentiable functions. We wish
to minimize a separable objective function W : R" — R as in

Problem 11 :
n
Maximize W (z) = Z wi(w;)
1=1

subjectto x; >0 1=1,2,---.n,
r1 < o,
1+ 19 < a1 + a9,

A

r1+xro+ - +axp=01+ar+- -+ an.

e, >0forie=1,2,---  n.

e The constraint set of problem Il 1s called Linear ascending con-
straints. Let F' denote the constraint set.

Inventory Management

We give a simple example in inventory management to motivate the
need to study problem I1.

e A single good produced at n time 1nstants.
— x; 1s the quantity of good produced at it instant.
— wj(x;) is the convex cost function.

th

— «; 1s the consumption at *" instant.

— Demand has to be met at each instant.

At time 1 : r1 >
Attime 2: 1 — a1+ x9 > ao.
= I1+T9 = a1+ .

Attimen: z1+ax9+ - +axp=a1+as+ -+ ap.

e Minimize total production cost :2?21 w;(x;)

In addition to the applications 1n operations research, problem I arises
in certain resource allocation problems in wireless communications.
The algorithms that solve problem 11 fall under two broad categories.

e Greedy algorithms: At each step, the variable that gives the largest
increase in objective function is incremented.

e Decomposition algorithms: Decomposes the optimization problem
into simpler sub problems.

We now give a decomposition algorithm that solves problem I1.

A Decomposition Algorithm

e Decompose problem 1] into single sum constraint problems.

u
SubProblem(/, v) : maximize Z w;(x;)

1=[+1

u U

D Ti= ) i
i=l+1 i=l+1

e There exists indices 0 = s(0) < s(1) < s(2) < --- < s(p) = n such
that the solution to Sub problem(s(k), s(k+1)),k=0,1,--- ;p—1
gives the solution to problem I1.

e Complexity
— Complexity to find s(1), s(2), - - - , s(p) is O(n?).
— Complexity of the algorithm is atleast O(n?).

— The complexity of the fastest known algorithm that solves prob-
lem IT is O(nlog n).

Network Utility Maximization

Network Structure

e A network with a special structure.
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Figure 1: Network structure

e 1, users sending data across the network.
e User ¢ derives a utility w;(z;).

e Maximize sum utility subject to the flow constraints of the network.

n
System((x;); W, F') : Maximize sz(xz)
1=1
(LEZ> c I

e w;, 1= 1,2,--- ,n are strictly concave, increasing and continuously
differentiable functions.

Kelly Decomposition

e Distributed Optimization

— The network does not know the utility functions.
— Users do not know the network structure.

e Kelly decomposition (Kelly et al.)

— Decomposes the system problem into n user problems and a net-
work problem.
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Figure 2: Kelly Decomposition

e The network sets \;, the cost per unit rate for user .
e Lct p; be the amount user 2 1s willing to pay.
e User 7 expects a rate .
e Choose p; to maximize the net utility of user .
. , . Di
User(p;; A;) :  Maximize wz()\—) — p;
1

e Based on (p;), the network allocates rates in a proportionally fair
manner.

n
Network((x;); (p;), F') - Maximize Z p; - log x;

1=1
(CEZ) c F.
e Let (z;) maximize the network problem.
o The updated cost per unit rate, A; = 2.
Algorithm
e An iterative method
(0)
0 0 0 1 D; 1 .
) = o) = @)= (N =5 ) = ) — @)
T
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e The optimal solution to the system problem, =*, satisfies

e 7'(x) has multiple fixed points.
e Rate update

2B = (1 — a(k)) - 2 + a(k) - T(x9)).

e Take a(k) =

T =

Proof of Convergence

o z(k) approximates the trajectory of the following ODE.

i(t) = T(z) — =.

e The equilibrium points of the ODE are the fixed points of T'(x).
e x(t) converges to an equilibrium point shown via Lyapunov theory.

e ¥/ (x) is the Lyapunov function.

o 2(t) — z*, hence zF) — 2*,

A Geometric Solution to the Network Problem

e Consider the network problem for the case n = 4.

e Let ¢y be the origin and 1, ¢, {3, ¢4 be points in R? with t; located
at <Z:Lj:1 SR Zj&j:l pj)'

e The solution to the network problem 1s obtained from the ’concave
cover’ of the points ¢1,to, {5 and %4.

e Sce figure 3. The piece-wise linear function formed by the line seg-
ments tg — t1, t1 — t3 and t3 — 4 1s the concave cover of the points
t1,to,t5 and 4.
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Figure 3: The concave cover

e \| = Slope of tj — 1,
Ao = A3 = Slope of t1 — 13,
Ay = Slope of t3 — 4.
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e String algorithm (Muckstadt et al.) finds the concave cover in O(n)
steps.

Conclusion

In this work, we first proposed a centralized algorithm that solves
problem II. The algorithm solves the optimization problem by de-
composing it into single constraint problems. The complexity of the
decomposition technique is atleast O(n?). Faster algorithms exist that
solves problem II in O(nlog n) steps. In the second part, we solve
problem Il 1n a distributed setting using Kelly decomposition. The
distributed algorithm 1s efficient due to String algorithm that solves
the network problem in O(n) steps. The algorithm compares favor-
ably to the algorithm of Kelly-Mauloo-Tan (KMT) in certain aspects.
Although KMT uses Kelly decomposition, it does not solve the net-
work problem 1n each step. As a result, the rates allocated at inter-
mediate steps may not be feasible. This may also result in a slower
convergence of the KMT algorithm.

References

[1] PT.Akhil, R.Singh, and R.Sundaresan, A polymatroid ap-
proach to separable convex optimization with linear ascend-
ing constraints, Proceedings of the 2014 National Conference
on Communication, NCC 2014, IIT Kanpur, February-March
2014.

[2] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, "Rate control
for communication networks: Shadow prices, proportional fair-
ness and stability”, Journal of the Operational Research Soci-

ety, 1998.

[3]J. A. Muckstadt and A. Sapra, Principles of Inventory Manage-
ment, 2nd ed. Springer, 2010.



