
Systematic State Space Exploration for
Event-driven Multi-threaded Programs

Pallavi Maiya & Aditya Kanade

Dept. of Computer Science & Automation, IISc

Event-driven Programs

• Multi-threaded

• Threads associated with event queues

• Threads communicate via shared objects

and by posting events.

• Events processed in the order of their arrival.

• Event handlers execute to completion before

next event is processed.

• Handlers on different threads interleave.

2

T1 T2 T3

…

… Tn

Shared objects

Event-driven Programs

• Multi-threaded

• Threads associated with event queues

• Threads communicate via shared objects

and by posting events.

• Events processed in the order of their arrival.

• Event handlers execute to completion before

next event is processed.

• Handlers on different threads interleave.

2

• Event-driven model – a

generalization of the multi-

threaded model.

• Non-determinism in thread

schedule + event ordering

• Existing concurrency analysis

techniques are designed for

multi-threaded programs.

• Require analysis techniques

specialized for event-driven

model.

Single-threaded race

Thread 2Thread 1

x = 1; x = -1;

print(x);

Output ?

Data Race

Unordered conflicting memory accesses results in data races – symptoms of

concurrency bugs.

Multithreaded race

public void onClickAddBtn(…){

obj = new CustomObject();

. . .

}

public void onClickDeleteBtn(…){

obj = null;

. . .

}

public void onTimerEvent(…){

obj.foo();

}

3

Android programs are popular event-driven multi-threaded programs.

• Formalized concurrency semantics of Android applications.

• Defined happens-before relation reasoning about causal ordering
across threads and across event handlers.

• Algorithm to detect both single-threaded & multi-threaded data races.

• DroidRacer – a dynamic tool to detect data races.

• Performs systematic testing

• Identified potential races in popular applications

4

Race Detection for Android Applications [PLDI '14]

Applications Multi-threaded Single-threaded

Aard Dictionary
Music Player

My Tracks
Messenger

Tomdroid Notes
FBReader
Browser

OpenSudoku
K-9 Mail

SGTPuzzles

Total

1 (1)
0

1 (0)
1 (1)

0
1 (0)
2 (1)
1 (0)
9 (2)

11 (10)

27 (15)

0
32 (14)

3 (1)
21 (10)

6 (2)
36 (26)

64 (2)
1 (0)
1 (0)

21 (8)

185 (61)

Remind Me
Twitter

Adobe Reader
Facebook
Flipkart

0
0

34
12
12

54
31
82
10

266

5

X (Y)

Races reported (True Positives)

Bad behaviors: 6

Experimental Evaluation

6

Even with fixed inputs, scheduling non-determinism gives rise to a huge state space
for multi-threaded programs.

s0

s7s1

s3

c1 b1

b2

b2

b1

c2

c2

s2

s5

c1

s6

b2

s4

s8

c1 ……

Systematic State Space Exploration

Finding concurrency bugs requires systematic state

space exploration techniques like model checking.

Partial Order Reduction minimizes redundant

explorations by model checkers.

• Existing POR techniques are primarily for multi-threaded programs.
• Based on equivalence called Mazurkiewicz traces induced by a notion of

independence between operations.

Our Contributions

• Dependence relation suitable for event-driven programs.

• A new notion of similarity between sequences called dependence-
covering sequences.

• A new backtracking set called dependence-covering sets, which
preserve deadlock cycles and assertion violations.

• Preliminary experimental evaluation showing the scalability of
dependence-covering sets compared to persistent sets, for event-driven
programs.

7

Partial Order Reduction for Event-driven Multi-threaded
Programs [TACAS '16]

Model Checking of Event-driven Programs

8

b1: post(t2,e1,t1) //on thread t2
c1: post(t3,e2,t1) //on thread t3

//on thread t1 with event queue

H1:= {a1: post(t1,e3,t1)}

H2:= {a2: x = 5}

H3:= {a3: y = 10}

Model Checking of Event-driven Programs

b1: post(t2,e1,t1) //on thread t2
c1: post(t3,e2,t1) //on thread t3

//on thread t1 with event queue

H1:= {a1: post(t1,e3,t1)}

H2:= {a2: x = 5}

H3:= {a3: y = 10}

Existing POR based model

checkers explore all possible

orderings of events.

s0

s1

b1

s2

c1

a1

s4

s5

a2

a3

s6

a1

s7

s8

c1

a3

a2

s9

a3

c1

s10

c1

s14

b1

a2

s12

a2

s11

b1

s13

a1

a3

e3e1 e2

e2e1

s3

8

Model Checking of Event-driven Programs

b1: post(t2,e1,t1) //on thread t2
c1: post(t3,e2,t1) //on thread t3

//on thread t1 with event queue

H1:= {a1: post(t1,e3,t1)}

H2:= {a2: x = 5}

H3:= {a3: y = 10}

Dependence-covering sets based POR

identifies similarity between sequences

and explores only one sequence.

s0

s1

b1

s2

c1

a1

s4

s5

a2

a3

s6

a1

s7

s8

c1

a3

a2

s9

a3

c1

s10

c1

s14

b1

a2

s12

a2

s11

b1

s13

a1

a3

e3e1 e2

e2e1

s3

8

Exploration based on dependence-covering sets explores many fewer transitions

—often orders of magnitude fewer— compared to exploration based on persistent

sets, in which event queues are considered as shared objects.

Experimental Evaluation
Android Apps DPOR EM-DPOR

Sequences
explored

Time taken Sequences
explored

Time taken

Remind Me 24 0.18s 3 0.05s

My Tracks 1610684 TIMEOUT 405013 101m

Music Player 1508413 TIMEOUT 266 4.15s

Character
Recognition

1284788 199m 756 6.58s

Aard
Dictionary

359961 TIMEOUT 14 1.4s

DPOR – an algorithm to

compute Persistent sets.

EM-DPOR – an algorithm

to compute dependence-

covering sets.

*TIMEOUT = 4 hours

9

• Formalization of Android concurrency model and happens-before rules to capture
causality in this model.

• DroidRacer, a dynamic data race detector for Android applications.

• Dependence-covering Sets – a new POR technique suitable for event-driven
programs, which preserves deadlock cycles and assertion violations.

• Empirical evidence shows that explorations based on dependence-covering sets
outperform exploration based on persistent sets for event-driven programs.

Future Work

• Develop complementary POR techniques like sleep sets suitable for event-driven
concurrency model.

• Improve the efficiency of our POR technique.

Summary and Future Work

10

