
Concurrency Analysis of Asynchronous APIs

Anirudh Santhiar and Aditya Kanade

April 2, 2016

Computer Science and Automation, IISc



Introduction

Asynchronous Programming Model1

A way to organize programs to avoid blocking.

In a nutshell

waiting in line for your idly

vs

registering your order,

doing other things, having

store call you when ready.

We analyze the concurrency behaviours of

• Event driven asynchronous libraries with programmatic event loops

to detect races (joint work with S. Kaleeswaran)

• C# asynchronous programs to find deadlocks
1Images courtesy tripadvisor.in and commons.wikimedia.com

1

tripadvisor.in
commons.wikimedia.com


Races involving Programmatic Event Loops

• An Event Loop is the basic scheduling mechanism for programs that

respond to asynchronous events

wh i l e ( ! e x i t ) {
e = nextEvent ( ) ;

p r o c e s s e ;

}

• We consider frameworks where event loops can also be spun

programmatically by event handlers

• Improve responsiveness while waiting for the user or network

• Prone to interference between handler spinning event loop and

handler running inside the loop

2



Bug in KTNef

Bug

Close the window when an

error dialog is shown.

∼KTNEFMain
...

QuitHandler

...

exec

...

error

loadFile

OpenHandler

Handler

QuitHandler

in the

programmatic

event loop

The paused

handler

OpenHandler

this object

frees

uses

stack

bottom

Interference between paused handler and handler

running inside programmatic event loop

• The FileOpen event’s handler spins a programmatic event loop

during the time the error dialog is shown

• There is a race between FileHandler and QuitHandler that runs

in the programmatic event loop

Goal

Reason about non-determinism introduced by programmatic event loops

to detect such races. 3



Our Work

Technical Highlights

• Powerful happens-before framework to detect races beyond the

state-of-the art

• Account for all general scheduling scenarios e.g., recursive and

cascaded programmatic event loops

• Novel sparse happens-before relation enabling faster race detection

Contributions

• Analyzes the programmatic event loop mechanism - widely used in

OS APIs, GUI libraries, Browsers

• Presents happens-before rules to detect race conditions

• Efficient computation of the happens-before relation: 5× speedup

• 13 new and harmful race conditions in 9 open-source applications

including Okular, Kate and KOrganizer

• Tools: Instrumentation framework and race detector SparseRacer 4



Deadlocks in Asynchronous Programs

Mixing synchronous and asynchronous waiting can lead to deadlocks

UI IO

. .

t.Result

. . . . .

UI event queue

result = Process(contents);

async Task <String > GetContentsAsync(Uri uri)

{

using (var client = new HttpClient ()){

// async wait

var contents = await client.GetStringAsync(uri);

result = Process(contents); // continuation

return result;

}

}

public void Button1_Click (...)

{

var t = GetContentsAsync (...);

resultBox.Text = t.Result; // sync wait

}

• t.Result is a blocking call that prevents GetContentsAsync from

completing

• In turn, the only way to unblock t.Result is for

GetContentsAsync to complete

The deadlock is observed even though there is no explicit thread creation

and locking.
5



Our Work

• Design a static analysis to detect such deadlocks.

• Static analysis captures C# semantics for scheduling and

async/await - key to determining where suspensions resume, and

therefore deadlocking behaviour.

• Analyzes control flow in the presence of continuations and APIs

affecting scheduling behaviour

• Preliminary results are encouraging - Prototype tool has found

previously unknown deadlocks in 7 open source applications

6



Conclusions

• Programmers increasingly use powerful language features and APIs

to structure their programs to take advantage to asynchrony

• However, this can allow non-determinism at runtime or make

reasoning about the flow of control difficult, leading to bugs that are

difficult to diagnose or reproduce

• We have designed static and dynamic techniques to help understand

the behaviour of asynchronous programs better, and tools to

automatically find some of these bugs that are beyond the

state-of-the-art.

7



Extra Slides



Solution Idea

Idea

• Find bugs using non-buggy executions

• Design trace language to record interesting operations

• Design happens-before rules to detect possible reorderings of these

• Determine if there is a re-ordering of event handlers so that

conflicting operations such as uses and frees can be reordered to

induce bugs

• Notify programmer about such re-orderings along with debug

information

8



Results
Application #Ops #Evts #Blks #Interf. Time

Handlers in sec

Total True

Ark 5008 127 148 6 2 2

Cervisia 1726 129 156 14 2 0.3

Kate 83633 194 225 4 1 480

KDF 1089 15 24 1 1 0.2

Kolourpaint 12746 67 75 2 1 12

KOrganizer 58232 273 290 12 2 179

KTnef 1158 258 275 1 1 0.3

KWrite 74105 62 75 4 1 396

Okular 16785 223 273 14 2 15

Total 58 13

ar
k

ce
rv

ka
te

kd
f

kp
n

t

ko
rg

kt
n

e

kw
rt

ok
u

l

10−1

100

101

102

103

Applications

T
im

e
to

co
m
p
u
te

g
ra
p
h
in

se
c.

(l
o
g
sc
al
e)

Baseline SparseRacer

Avg. for baseline Avg. for SparseRacer

Effective!

SparseRacer found

13 harmful use after

free bugs in 9

popular open source

applications.

Fast!

SparseRacer was 5X

faster than the

baseline in race

detection time.

9



Asynchronous Operations2

Synchronous Operations

Do not permit the caller to proceed until the operation completes

Asynchronous Operations

Decouple initiating the operation (short-lived) from waiting for it to

complete

Concurrency

Asynchrony enables concurrent execution

• Postpone the waiting

• Overlap the waiting periods of multiple operations

• Avoid waiting by registering callbacks

2Slide inspired by Claudio Russo

10




