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Introduction

Asynchronous Programming Model1

A way to organize programs to avoid blocking.

In a nutshell

waiting in line for your idly

vs

registering your order,

doing other things, having

store call you when ready.

We analyze the concurrency behaviours of

• Event driven asynchronous libraries with programmatic event loops

to detect races (joint work with S. Kaleeswaran)

• C# asynchronous programs to find deadlocks
1Images courtesy tripadvisor.in and commons.wikimedia.com

1

tripadvisor.in
commons.wikimedia.com


Races involving Programmatic Event Loops

• An Event Loop is the basic scheduling mechanism for programs that

respond to asynchronous events

wh i l e ( ! e x i t ) {
e = nextEvent ( ) ;

p r o c e s s e ;

}

• We consider frameworks where event loops can also be spun

programmatically by event handlers

• Improve responsiveness while waiting for the user or network

• Prone to interference between handler spinning event loop and

handler running inside the loop
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Bug in KTNef

Bug

Close the window when an

error dialog is shown.
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this object

frees
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stack

bottom

Interference between paused handler and handler

running inside programmatic event loop

• The FileOpen event’s handler spins a programmatic event loop

during the time the error dialog is shown

• There is a race between FileHandler and QuitHandler that runs

in the programmatic event loop

Goal

Reason about non-determinism introduced by programmatic event loops

to detect such races. 3



Our Work

Technical Highlights

• Powerful happens-before framework to detect races beyond the

state-of-the art

• Account for all general scheduling scenarios e.g., recursive and

cascaded programmatic event loops

• Novel sparse happens-before relation enabling faster race detection

Contributions

• Analyzes the programmatic event loop mechanism - widely used in

OS APIs, GUI libraries, Browsers

• Presents happens-before rules to detect race conditions

• Efficient computation of the happens-before relation: 5× speedup

• 13 new and harmful race conditions in 9 open-source applications

including Okular, Kate and KOrganizer

• Tools: Instrumentation framework and race detector SparseRacer 4



Deadlocks in Asynchronous Programs

Mixing synchronous and asynchronous waiting can lead to deadlocks

UI IO

. .

t.Result

. . . . .

UI event queue

result = Process(contents);

async Task <String > GetContentsAsync(Uri uri)

{

using (var client = new HttpClient ()){

// async wait

var contents = await client.GetStringAsync(uri);

result = Process(contents); // continuation

return result;

}

}

public void Button1_Click (...)

{

var t = GetContentsAsync (...);

resultBox.Text = t.Result; // sync wait

}

• t.Result is a blocking call that prevents GetContentsAsync from

completing

• In turn, the only way to unblock t.Result is for

GetContentsAsync to complete

The deadlock is observed even though there is no explicit thread creation

and locking.
5



Our Work

• Design a static analysis to detect such deadlocks.

• Static analysis captures C# semantics for scheduling and

async/await - key to determining where suspensions resume, and

therefore deadlocking behaviour.

• Analyzes control flow in the presence of continuations and APIs

affecting scheduling behaviour

• Preliminary results are encouraging - Prototype tool has found

previously unknown deadlocks in 7 open source applications
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Conclusions

• Programmers increasingly use powerful language features and APIs

to structure their programs to take advantage to asynchrony

• However, this can allow non-determinism at runtime or make

reasoning about the flow of control difficult, leading to bugs that are

difficult to diagnose or reproduce

• We have designed static and dynamic techniques to help understand

the behaviour of asynchronous programs better, and tools to

automatically find some of these bugs that are beyond the

state-of-the-art.
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Extra Slides



Solution Idea

Idea

• Find bugs using non-buggy executions

• Design trace language to record interesting operations

• Design happens-before rules to detect possible reorderings of these

• Determine if there is a re-ordering of event handlers so that

conflicting operations such as uses and frees can be reordered to

induce bugs

• Notify programmer about such re-orderings along with debug

information
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Results
Application #Ops #Evts #Blks #Interf. Time

Handlers in sec

Total True

Ark 5008 127 148 6 2 2

Cervisia 1726 129 156 14 2 0.3

Kate 83633 194 225 4 1 480

KDF 1089 15 24 1 1 0.2

Kolourpaint 12746 67 75 2 1 12

KOrganizer 58232 273 290 12 2 179

KTnef 1158 258 275 1 1 0.3

KWrite 74105 62 75 4 1 396

Okular 16785 223 273 14 2 15

Total 58 13
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Baseline SparseRacer

Avg. for baseline Avg. for SparseRacer

Effective!

SparseRacer found

13 harmful use after

free bugs in 9

popular open source

applications.

Fast!

SparseRacer was 5X

faster than the

baseline in race

detection time.
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Asynchronous Operations2

Synchronous Operations

Do not permit the caller to proceed until the operation completes

Asynchronous Operations

Decouple initiating the operation (short-lived) from waiting for it to

complete

Concurrency

Asynchrony enables concurrent execution

• Postpone the waiting

• Overlap the waiting periods of multiple operations

• Avoid waiting by registering callbacks

2Slide inspired by Claudio Russo

10




