Network Design for QoS under IEEE 802.15.4 ("Zigbee") CSMA/CA for Internet of Things Applications

EECS Symposium

Abhijit Bhattacharya

Advisor: Prof. Anurag Kumar
Dept. of ECE, IISc, Bangalore

April 28, 2016

Wireless Sensor Networks and loT

- Wireless sensor networks essential component of the emerging Internet of Things
- Sensor data \rightarrow WSN \rightarrow Gateway/sink \rightarrow Internet \rightarrow Cloud

How do we design wireless networks for interconnecting sensors in the field to the Internet with some guranteed QoS?

The Subgraph Design Problem

- Given: sensor locations, sink location, potential relay locations, fixed transmit power of the nodes
- Assume: the link qualities between the various locations known - Thus, there is a graph of "good" links
- Prohlem: select a set of notential relay locations to place relays
- Obtain a multihop wireless network with some desired properties, e.g.
min number of relays s.t. $P[$ end-to-end delay

The Subgraph Design Problem

- Given: sensor locations, sink location, potential relay locations, fixed transmit power of the nodes
- Assume: the link qualities between the various locations known
- Thus, there is a graph of "good" links
- Problem:
select a set of potential relay locations to place relays
- Obtain a multihop wireless network with some desired properties, e.g.
min number of relays s.t. Plend-to-end delay

The Subgraph Design Problem

- Given: sensor locations, sink location, potential relay locations, fixed transmit power of the nodes
- Assume: the link qualities between the various locations known
- Thus, there is a graph of "good" links
- Problem: select a set of potential relay locations to place relays
- Obtain a multihop wireless network with some desired properties, e.g., \min number of relays s.t. $P\left[\right.$ end-to-end delay $\left.\leq d_{\max }\right] \geq p_{\text {del }}$

Traffic Rate Regimes: Application Dependent

- Very light traffic regime
- Environment/resource monitoring applications
- Measurements required at multiple seconds or minutes
- Essentially no inter-node contention
- In this regime, Target $p_{\text {del }} \Rightarrow$ Hop Constraint
- Light to moderate traffic regime
- Sub-second measurement rates
- E.g., health monitoring
- Contention due to CSMA/CA

Theorem

To meet QoS target for light to moderate traffic regime, necessary to satisfy the same under very light traffic regime.

Very Light Traffic: Problem Formulation

Potential Relay Node Locations

- Given a graph over the sources, potential relay locations, and the sink
- Problem: Extract a subgraph spanning the sources, rooted at the sink
- using a minimum number of relays s.t.
- Each source is connected to the sink with hop count at most $h_{\text {max }}$
- Set Cover-Hard \Rightarrow We propose approximation algorithms
- Bhattacharya-Kumar, Elsevier Computer Networks, 2014

Network Design Algorithms: Outline

- Sequence of shortest path computations from the sources to the sink
- Prune a relay in each iteration
- Each time, compute a new SPT over only the remaining nodes
- Until hop constraint is violated
- Trick is to choose which relay to prune next
- Empirical average case approx. ratio close to 1 from over 1000 randomly generated scenarios

Theorem

Worst case approx. ratio: $\min \left\{m\left(h_{\max }-1\right),(|R|-1)\right\}$, where $m=\#$ sources, $h_{\max }=$ hop constraint, and $|R|=\#$ potential relay locations

- Too conservative

Average Case Analysis in a Random Geometric Graph Setting

Theorem

Average case approx. ratio, $\alpha \leq \frac{\bar{N}}{\underline{R}_{O p t}}$ where,

$$
\begin{gathered}
\bar{N} \triangleq m\left[h_{\max }-\frac{1}{(1-\epsilon)^{2} h_{\max }^{2}}-\sum_{j=2}^{h_{\max }-1} \frac{j^{2}}{h_{\max }^{2}}\right]-m+m \delta\left(h_{\max }-1\right) \\
\underline{R}_{O p t} \triangleq\left[1-\left(\frac{h_{\max }-1}{(1-\epsilon) h_{\max }}\right)^{2 m}\right](1-\delta) \sum_{i=1}^{h_{\max }-1}\left(1-\frac{\frac{n_{i}^{2}}{3}}{(1-\epsilon)^{2} h_{\max }^{2}}\right)^{m-1}
\end{gathered}
$$

Multi-sink Network Deployment: An Example

- Cost of each potential sink location, c_{s}
- Cost of each potential relay location, c_{r}

The Problem

- Extract a subgraph spanning the sources
> - Set Cover Hard; we employ a greedy heuristic
> - Fast run-time; close to optimal solutions in practice

Multi-sink Network Deployment: An Example

- Cost of each potential sink location, c_{s}
- Cost of each potential relay location, c_{r}

The Problem

- Extract a subgraph spanning the sources
- using a minimum cost selection of relays and sinks s.t.
- each source has a path to at least one sink with hop count at most $h_{\max }$
- Set Cover Hard; we employ a greedy heuristic
- Fast run-time; close to optimal solutions in practice
- Bhattacharya et al., SPCOM '14

Beyond Very Light Traffic: Overview of our Approach

Our Approach

- Consider a very light traffic design
- Hop counts $h_{i}, 1 \leq i \leq m$, being bounded by $h_{\text {max }}$ ($=5$ in the example)
- Measurement generation rate at sensors is $\lambda \mathrm{pkts} / \mathrm{s}$
- How large can λ be until the packet drop probability at a link exceeds a target $\bar{\delta}$?
- Develop an analytical model for IEEE 802.15.4 CSMA/CA multihop networks
- A decoupling approximation to analyze individual node processes
- Yields a set of fixed point equations involving time-averaged node statistics
- Srivastava et al., Elsevier Ad Hoc Networks, 2016

Beyond Very Light Traffic: Overview of our Approach

Our Approach

- Consider a very light traffic design
- Hop counts $h_{i}, 1 \leq i \leq m$, being bounded by $h_{\max }$ ($=5$ in the example)
- Measurement generation rate at sensors is $\lambda \mathrm{pkts} / \mathrm{s}$
- How large can λ be until the packet drop probability at a link exceeds a target $\bar{\delta}$?
- Develop an analytical model for IEEE 802.15.4 CSMA/CA multihop networks
- A decoupling approximation to analyze individual node processes
- Yields a set of fixed point equations involving time-averaged node statistics
- Srivastava et al., Elsevier Ad Hoc Networks, 2016
- Use the model to obtain constraints on arrival rates and topology to meet QoS
- Bhattacharya \& Kumar, Elsevier Ad Hoc Networks, 2015

Light Traffic Design: No Hidden Nodes

- $h_{i} \leq h_{\text {max }}, 1 \leq i \leq m$
- Arrival rate at each sensor λ pkts/s
- Find maximum λ s.t. drop probability at a link at most $\bar{\delta}$
- $T=$ packet duration on the medium; $B(\cdot, \cdot)$ has an explicit formula - Obtained by Taylor expansion around the detailed f.p., and analyzing the resulting simpler f.p. using several concepts from Real Analysis - Notice that $\lambda \sum_{i=1}^{m} h_{i}$ is the total offered packet rate on the medium - Example: $T=262$ symbols, $\bar{\delta}=2 \% \Rightarrow B(\bar{\delta}, T)=95.2$ pkts $/ \mathrm{s}$
- Consequence: A Shortest Path Tree is apprọx., throughput optimal

Light Traffic Design: No Hidden Nodes

- $h_{i} \leq h_{\text {max }}, 1 \leq i \leq m$
- Arrival rate at each sensor λ pkts/s
- Find maximum λ s.t. drop probability at a link at most $\bar{\delta}$
- For the light traffic regime, we obtain a design constraint

$$
\lambda \sum_{i=1}^{m} h_{i} \leq B(\bar{\delta}, T)
$$

- $T=$ packet duration on the medium; $B(\cdot, \cdot)$ has an explicit formula
- Obtained by Taylor expansion around the detailed f.p., and analyzing the resulting simpler f.p. using several concepts from Real Analysis
- Notice that $\lambda \sum_{i=1}^{m} h_{i}$ is the total offered packet rate on the medium

Light Traffic Design: No Hidden Nodes

- $h_{i} \leq h_{\text {max }}, 1 \leq i \leq m$
- Arrival rate at each sensor λ pkts/s
- Find maximum λ s.t. drop probability at a link at most $\bar{\delta}$
- For the light traffic regime, we obtain a design constraint

$$
\lambda \sum_{i=1}^{m} h_{i} \leq B(\bar{\delta}, T)
$$

- $T=$ packet duration on the medium; $B(\cdot, \cdot)$ has an explicit formula
- Obtained by Taylor expansion around the detailed f.p., and analyzing the resulting simpler f.p. using several concepts from Real Analysis
- Notice that $\lambda \sum_{i=1}^{m} h_{i}$ is the total offered packet rate on the medium
- Example: $T=262$ symbols, $\bar{\delta}=2 \% \Rightarrow B(\bar{\delta}, T)=95.2$ pkts $/ \mathrm{s}$

Light Traffic Design: No Hidden Nodes

- $h_{i} \leq h_{\text {max }}, 1 \leq i \leq m$
- Arrival rate at each sensor λ pkts/s
- Find maximum λ s.t. drop probability at a link at most $\bar{\delta}$
- For the light traffic regime, we obtain a design constraint

$$
\lambda \sum_{i=1}^{m} h_{i} \leq B(\bar{\delta}, T)
$$

- $T=$ packet duration on the medium; $B(\cdot, \cdot)$ has an explicit formula
- Obtained by Taylor expansion around the detailed f.p., and analyzing the resulting simpler f.p. using several concepts from Real Analysis
- Notice that $\lambda \sum_{i=1}^{m} h_{i}$ is the total offered packet rate on the medium
- Example: $T=262$ symbols, $\bar{\delta}=2 \% \Rightarrow B(\bar{\delta}, T)=95.2$ pkts $/ \mathrm{s}$
- Consequence: A Shortest Path Tree is approx. throughput optimal

