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Information-Theoretic Security

Wireless communication
channels:

Noisy

→ Reliability

Insecure

→ Security

An information-theoretic approach:
Messages drawn at random
No assumptions on computational power
of eavesdropper
Average-case security:
Want Eve’s observations W to be
independent of messages Xi .
(perfect secrecy), or

I(W ;Xi) =
∑
w,xi

p(w , xi) log2
p(w , xi)

p(w)p(xi)

“is small”.
(strong secrecy)
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Secure Bidirectional Relaying

Messages X , Y ∈ G
Power constraint:
1
nE‖u‖2 < P and 1

nE‖v‖2 < P
Reliability:
Probability of decoding error is
small.

Transmission rate:
R = 1

n log2 |G|

Message Message

X Y

w = u + v + z

u v
A R B

u, v ∈ Rn

X ⊕ Y

A R Bw̃ w̃

w̃

Ŷ X̂

X ⊕ Y

Perfect secrecy:

w ⊥⊥ X and w ⊥⊥ Y

Strong secrecy:

lim
n→∞

I(X ; w) = lim
n→∞

I(Y ; w) = 0
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Highlights

Explicit coding scheme
that achieves perfect
secrecy: irrespective of
noise distribution.
Coding scheme for
strong secrecy:
irrespective of noise
distribution.
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Perfect secrecy

Strong secrecy

No secrecy

Perfect secrecy

Strong secrecy

No secrecy (best known)

Results for unequal channel gains, i.e.,

w = h1u + h2v + z,

when h1, h2 unknown to users.
Larger networks.

1“Secure Compute-and-Forward in a Bidirectional Relay,” IEEE Transactions on Information Theory, May 2015.
2“Nested Lattice Codes for Secure Bidirectional Relaying with Asymmetric Channel Gains,” ITW 2015.
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Secret Key Generation from Correlated Gaussian Sources

Ti has N iid samples of a Gaussian
source Xi .
(X1(t), X2(t), . . . , Xm(t)) are correlated
Gaussian rvs.
Agree on secret key using correlated rvs
and public communication.

1“A Lattice Coding Scheme for Secret Key Generation from Gaussian Markov Tree Sources”, accepted, ISIT 2016
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Secret Key Generation from Correlated Gaussian Sources

Ti has N iid samples of a Gaussian
source Xi .
(X1(t), X2(t), . . . , Xm(t)) are correlated
Gaussian rvs.
Agree on secret key using correlated rvs
and public communication.

Main contributions:
We give a coding scheme
that generates strongly
secure secret keys.
Encoding and decoding
complexities are
polynomial in N .
Characterize achievable
secret key rates when
joint distribution of
sources is a Markov tree.

1“A Lattice Coding Scheme for Secret Key Generation from Gaussian Markov Tree Sources”, accepted, ISIT 2016
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Lattices and Lattice Codes

v1, v2, . . . , vn a basis for Rn.
Λ = {

∑n
i=1 aivi : ai ∈ Z} is a

lattice.

Lattice code: All lattice points
within a shaping region S.
Nested lattices: (Λ, Λ0), where
Λ0 ⊂ Λ are lattices in Rn.
Fundamental Voronoi region: set
of points of Rn closest to the
zero lattice point.
Nested lattice code:
Fundamental Voronoi region of
Λ0 is the shaping region.
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Nested Lattice Codes for Gaussian Channels

Codes for communication over Gaussian channels
Vector quantization
Codes for secure communication and secret key generation
Lattice-based cryptography
Sphere packing and covering
Many more

Drawback of general nested lattice codes: Closest lattice point decoding
takes exponential time.

Goal: Design nested lattice codes with polynomial encoding-decoding
complexity.
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Low-Density Construction-A (LDA) Lattices

Lattices constructed from low-density parity-check (LDPC) codes.
Proposed by di Pietro et al. (2013).
Admit low-complexity message-passing decoders.
We studied some structural properties of these lattices.
Under closest lattice point decoding, nested LDA lattice codes achieve
capacity of AWGN channel (di Pietro et al. 2014).
We also showed that they yield optimal high-dimensional vector
quantizers and sphere packings.

1“Some Goodness Properties of LDA Lattices”, submitted, Problems of Information Transmission, Dec. 2015
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Concatenated Lattice Codes with Polynomial Encoding and
Decoding Complexity

Concatenated lattice codes achieve the
capacity of the AWGN channel.1

Concatenating with outer
Reed-Solomon code:
Encoding and decoding
complexity: O(N2)
Error probability: e−Ω(N)

Concatenating with outer
expander code:
Encoding complexity: O(N2)
Decoding complexity:
O(N log2 N)
Error probability: e−Ω(N)

First constructions to have poly-time
complexity and exponentially
decaying probability of error.

Extensions:
Gaussian wiretap channel
Physical-layer network coding
Secret key generation

1“A Capacity-Achieving Coding Scheme for the AWGN Channel with Polynomial Encoding and Decoding Complexity,” NCC 2016,
arXiv:1603.08236.
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Summary

Secure bidirectional relaying: coding schemes and achievable
transmission rates.
Secret key generation: poly-time coding scheme and achievable key
rates.
Lattices from LDPC codes: properties.
Concatenated lattice codes: capacity-achieving with poly-time
encoding and decoding complexity.

More details

Attend poster session!
ece.iisc.ernet.in/˜shashank/publications.html
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