#### Lattice Codes for Secure Communication and Secret Key Generation

Shashank Vatedka Advisor: Prof. Navin Kashyap

{shashank,nkashyap}@ece.iisc.ernet.in Dept. of Electrical Communication Engineering

EECS Research Students Symposium - 2016

## Information-Theoretic Security



Wireless communication channels:

- Noisy
- Insecure

## Information-Theoretic Security



Wireless communication channels:

- Noisy  $\rightarrow$  Reliability
- Insecure  $\rightarrow$  Security

#### Information-Theoretic Security



Wireless communication channels:

- Noisy  $\rightarrow$  Reliability
- Insecure  $\rightarrow$  Security

#### An information-theoretic approach:

- Messages drawn at random
- No assumptions on computational power of eavesdropper
- Average-case security: Want Eve's observations W to be independent of messages X<sub>i</sub>. (perfect secrecy), or

$$I(W; X_i) = \sum_{w, x_i} p(w, x_i) \log_2 \frac{p(w, x_i)}{p(w)p(x_i)}$$

"is small". (strong secrecy)

## Secure Bidirectional Relaying





- Messages  $X, Y \in \mathbb{G}$
- Power constraint:  $\frac{1}{n}\mathbb{E}\|\mathbf{u}\|^2 < P$  and  $\frac{1}{n}\mathbb{E}\|\mathbf{v}\|^2 < P$
- Reliability: Probability of decoding error is small.
- Transmission rate:  $R = \frac{1}{n} \log_2 |\mathbb{G}|$

## Secure Bidirectional Relaying



- Messages  $X, Y \in \mathbb{G}$
- Power constraint:  $\frac{1}{n}\mathbb{E}\|\mathbf{u}\|^2 < P$  and  $\frac{1}{n}\mathbb{E}\|\mathbf{v}\|^2 < P$
- Reliability: Probability of decoding error is small.
- Transmission rate:  $R = \frac{1}{n} \log_2 |\mathbb{G}|$





- Perfect secrecy:
  - $\mathbf{w} \perp \!\!\!\perp X$  and  $\mathbf{w} \perp \!\!\!\perp Y$
- Strong secrecy:

$$\lim_{n\to\infty} I(X;\mathbf{w}) = \lim_{n\to\infty} I(Y;\mathbf{w}) = 0$$

## Highlights

- Explicit coding scheme that achieves perfect secrecy: irrespective of noise distribution.
- Coding scheme for strong secrecy: irrespective of noise distribution.



<sup>&</sup>lt;sup>1</sup> "Secure Compute-and-Forward in a Bidirectional Relay," IEEE Transactions on Information Theory, May 2015.

<sup>&</sup>lt;sup>2</sup> "Nested Lattice Codes for Secure Bidirectional Relaying with Asymmetric Channel Gains," ITW 2015.

## Highlights

- Explicit coding scheme that achieves perfect secrecy: irrespective of noise distribution.
- Coding scheme for strong secrecy: irrespective of noise distribution.



• Results for unequal channel gains, i.e.,

$$\mathbf{w} = h_1 \mathbf{u} + h_2 \mathbf{v} + \mathbf{z},$$

when  $h_1$ ,  $h_2$  unknown to users.

• Larger networks.

<sup>&</sup>lt;sup>1</sup> "Secure Compute-and-Forward in a Bidirectional Relay," IEEE Transactions on Information Theory, May 2015.

<sup>&</sup>lt;sup>2</sup> "Nested Lattice Codes for Secure Bidirectional Relaying with Asymmetric Channel Gains," ITW 2015.

## Secret Key Generation from Correlated Gaussian Sources



- T<sub>i</sub> has N iid samples of a Gaussian source X<sub>i</sub>.
- $(X_1(t), X_2(t), \dots, X_m(t))$  are correlated Gaussian rvs.
- Agree on secret key using correlated rvs and public communication.

<sup>1 &</sup>quot;A Lattice Coding Scheme for Secret Key Generation from Gaussian Markov Tree Sources", accepted, ISIT 2016

## Secret Key Generation from Correlated Gaussian Sources



- T<sub>i</sub> has N iid samples of a Gaussian source X<sub>i</sub>.
- $(X_1(t), X_2(t), \dots, X_m(t))$  are correlated Gaussian rvs.
- Agree on secret key using correlated rvs and public communication.

Main contributions:

- We give a coding scheme that generates strongly secure secret keys.
- Encoding and decoding complexities are polynomial in *N*.
- Characterize achievable secret key rates when joint distribution of sources is a Markov tree.

<sup>1 &</sup>quot;A Lattice Coding Scheme for Secret Key Generation from Gaussian Markov Tree Sources", accepted, ISIT 2016

v<sub>1</sub>, v<sub>2</sub>,..., v<sub>n</sub> a basis for ℝ<sup>n</sup>.
Λ = {∑<sub>i=1</sub><sup>n</sup> a<sub>i</sub>v<sub>i</sub> : a<sub>i</sub> ∈ ℤ} is a lattice.



- $\Lambda = \{\sum_{i=1}^{n} a_i \mathbf{v}_i : a_i \in \mathbb{Z}\}$  is a lattice.
- Lattice code: All lattice points within a shaping region S.



- $\Lambda = \{\sum_{i=1}^{n} a_i \mathbf{v}_i : a_i \in \mathbb{Z}\}$  is a lattice.
- Lattice code: All lattice points within a shaping region S.
- Nested lattices:  $(\Lambda, \Lambda_0)$ , where  $\Lambda_0 \subset \Lambda$  are lattices in  $\mathbb{R}^n$ .



- $\Lambda = \{\sum_{i=1}^{n} a_i \mathbf{v}_i : a_i \in \mathbb{Z}\}$  is a lattice.
- Lattice code: All lattice points within a shaping region S.
- Nested lattices:  $(\Lambda, \Lambda_0)$ , where  $\Lambda_0 \subset \Lambda$  are lattices in  $\mathbb{R}^n$ .
- Fundamental Voronoi region: set of points of  $\mathbb{R}^n$  closest to the zero lattice point.



- $\Lambda = \{\sum_{i=1}^{n} a_i \mathbf{v}_i : a_i \in \mathbb{Z}\}$  is a lattice.
- Lattice code: All lattice points within a shaping region S.
- Nested lattices:  $(\Lambda, \Lambda_0)$ , where  $\Lambda_0 \subset \Lambda$  are lattices in  $\mathbb{R}^n$ .
- Fundamental Voronoi region: set of points of  $\mathbb{R}^n$  closest to the zero lattice point.
- Nested lattice code: Fundamental Voronoi region of  $\Lambda_0$  is the shaping region.



#### Nested Lattice Codes for Gaussian Channels

- Codes for communication over Gaussian channels
- Vector quantization
- Codes for secure communication and secret key generation
- Lattice-based cryptography
- Sphere packing and covering
- Many more

Drawback of general nested lattice codes: Closest lattice point decoding takes exponential time.

#### Nested Lattice Codes for Gaussian Channels

- Codes for communication over Gaussian channels
- Vector quantization
- Codes for secure communication and secret key generation
- Lattice-based cryptography
- Sphere packing and covering
- Many more

Drawback of general nested lattice codes: Closest lattice point decoding takes exponential time.

Goal: Design nested lattice codes with polynomial encoding-decoding complexity.

- Lattices constructed from low-density parity-check (LDPC) codes.
- Proposed by di Pietro et al. (2013).
- Admit low-complexity message-passing decoders.
- We studied some structural properties of these lattices.
- Under closest lattice point decoding, nested LDA lattice codes achieve capacity of AWGN channel (di Pietro et al. 2014).
- We also showed that they yield optimal high-dimensional vector quantizers and sphere packings.

<sup>1 &</sup>quot;Some Goodness Properties of LDA Lattices", submitted, Problems of Information Transmission, Dec. 2015

# Concatenated Lattice Codes with Polynomial Encoding and Decoding Complexity

Concatenated lattice codes achieve the capacity of the AWGN channel.<sup>1</sup>

- Concatenating with outer Reed-Solomon code: Encoding and decoding complexity:  $O(N^2)$ Error probability:  $e^{-\Omega(N)}$
- Concatenating with outer expander code: Encoding complexity:  $O(N^2)$ Decoding complexity:  $O(N \log^2 N)$ Error probability:  $e^{-\Omega(N)}$

First constructions to have poly-time complexity and exponentially decaying probability of error.

Extensions:

- Gaussian wiretap channel
- Physical-layer network coding
- Secret key generation

<sup>&</sup>lt;sup>1</sup> "A Capacity-Achieving Coding Scheme for the AWGN Channel with Polynomial Encoding and Decoding Complexity," NCC 2016, arXiv:1603.08236.

- Secure bidirectional relaying: coding schemes and achievable transmission rates.
- Secret key generation: poly-time coding scheme and achievable key rates.
- Lattices from LDPC codes: properties.
- Concatenated lattice codes: capacity-achieving with poly-time encoding and decoding complexity.

- Secure bidirectional relaying: coding schemes and achievable transmission rates.
- Secret key generation: poly-time coding scheme and achievable key rates.
- Lattices from LDPC codes: properties.
- Concatenated lattice codes: capacity-achieving with poly-time encoding and decoding complexity.

#### More details

Attend poster session! ece.iisc.ernet.in/~shashank/publications.html