Prudent Memory Reclamation in
Procrastination-Based Synchronization

Aravinda Prasad & K Gopinath
Computer Science & Automation (CSA), Indian Institute of Science (IISc), Bangalore

{aravinda, gopi}@csa.iisc.ernet.in

EECS 2016

Synchronization via Procrastination

e Readers:

— Do not synchronize with writers —] At

— Are wait free and scale linearly e T I oI }---
o Writers:

} o] Copy and Update
— Copy the opject and update the I m -
copied version

— Wait for pre-existing readers o |
referring the old version to R [a & }---~

complete Defer Free

Example: Read-Copy-Update (RCU) - T —fw® F--~

Synchronization via Procrastination

e Readers:

— Do not synchronize with writers —] At

— Are wait free and scale linearly e T I oI }---
o Writers:

) o] Copy and Update
— Copy the oPJect and update the I m -
copied version

— Wait for pre-existing readers o |
referring the old version to R [a & }---~

complete Defer Free

Example: Read-Copy-Update (RCU) - T —fw® F--~

A deferred object is safe for freeing after the completion of all
pre-existing readers

Synchronization via Procrastination from Memory

Allocator’s Point of View

e Frequent allocation and freeing of objects

e Object allocation is spread over an interval of time. Freeing occurs
in bursts

e Reclamation of safe deferred objects is

— Controlled by synchronization mechanism
— Oblivious of the memory allocator state

Impact of RCU on the SLUB! allocator in the Linux kernel

300 T T T T

out-of-memory
250
200

150

100

Total Used Memory (GBytes)

50

0 5‘0 1(‘)0 1;0 2;)0
Time (Seconds)
e Intel Xeon processor with 64 CPUs (4 sockets, 8 cores/socket,
Test 2-way HT)
Setup: e 252 GB physical memory. Linux 3.17 kernel.

e Workload continuously performs update operation on 512 byte
objects

1SLUB is the recent allocator in the Linux kernel based on the slab allocator

Hints about the future

Deferred frees provide “precise hints” about the memory regions
that are about to be freed

) Grace Period)
Update o . Free

Time

o

Hint

Hints about the future

Deferred frees provide “precise hints” about the memory regions
that are about to be freed

) Grace Period)
Update o . Free

Time

o

Hint

Given hints about the future, can dynamic memory allocators
perform better?

The Prudence Dynamic Memory Allocator

The basic design principle is to have deferred objects visible and
processed in the memory allocator

The Prudence Dynamic Memory Allocator

The basic design principle is to have deferred objects visible and
processed in the memory allocator

Requirement Solution

Interface to defer the freeing of an N Export a new API to defer free an
object object (free_deferred())

Identify safe time to reclaim de- N Integrate synchronization mecha-
ferred objects nism with Prudence

Exploiting hints in Prudence

Reducing total fragmentation with hints

: __ allocated __ __ slabs_allocated X slab_size
Total fragmentatlon " requested ~ objects_requested X object_size

HEE E N

Slab A
free allocated
LN Vak
OmC] - M0
Slab B

(a) Without Hints

Exploiting hints in Prudence

Reducing total fragmentation with hints

allocated __ _ slabs_allocated X slab_size
requested ~ objects_requested X object_size

Total fragmentation =

HEE E N HEE E N

Slab A Slab A
free allocated deferred object
LN Vak Vak
COmC] -0 MmO -]
Slab B Slab B
(a) Without Hints (b) With Hints

Prudence selects slab A

Results - Endurance

Total Used Memory (GBytes)

300

250

200

150

100

50

—— swe |

Prudence

T
out-of-memory

0 50

Prudence does

100 150 200
Time (Seconds)

not suffer from high slab churns

Synchronization via procrastination has direct impact on the
performance of memory allocators

% Performance impact can be avoided by having deferred objects visible
to memory allocators

Deferred frees provide hints about the memory regions that are
about to be freed

% Optimizations based on hints can be exploited to improve the
performance of memory allocators

Reference:

“Prudent Memory Reclamation in Procrastination-Based
Synchronization”, Aravinda Prasad, K Gopinath, ASPLOS 2016

10

11

