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A deferred object is safe for freeing after the completion of all
pre-existing readers



Synchronization via Procrastination from Memory

Allocator’s Point of View

e Frequent allocation and freeing of objects

e Object allocation is spread over an interval of time. Freeing occurs
in bursts

e Reclamation of safe deferred objects is

— Controlled by synchronization mechanism
— Oblivious of the memory allocator state



Impact of RCU on the SLUB! allocator in the Linux kernel
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e Intel Xeon processor with 64 CPUs (4 sockets, 8 cores/socket,
Test 2-way HT)
Setup: e 252 GB physical memory. Linux 3.17 kernel.

e Workload continuously performs update operation on 512 byte
objects

1SLUB is the recent allocator in the Linux kernel based on the slab allocator



Hints about the future

Deferred frees provide “precise hints” about the memory regions
that are about to be freed
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Given hints about the future, can dynamic memory allocators
perform better?



The Prudence Dynamic Memory Allocator

The basic design principle is to have deferred objects visible and
processed in the memory allocator



The Prudence Dynamic Memory Allocator

The basic design principle is to have deferred objects visible and
processed in the memory allocator

Requirement Solution

Interface to defer the freeing of an N Export a new API to defer free an
object object (free_deferred())

Identify safe time to reclaim de- N Integrate synchronization mecha-
ferred objects nism with Prudence



Exploiting hints in Prudence

Reducing total fragmentation with hints
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Exploiting hints in Prudence

Reducing total fragmentation with hints

allocated __ _ slabs_allocated X slab_size
requested ~  objects_requested X object_size

Total fragmentation =
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Slab A Slab A
free allocated deferred object
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Slab B Slab B
(a) Without Hints (b) With Hints

Prudence selects slab A



Results - Endurance
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Synchronization via procrastination has direct impact on the
performance of memory allocators

% Performance impact can be avoided by having deferred objects visible
to memory allocators

Deferred frees provide hints about the memory regions that are
about to be freed

% Optimizations based on hints can be exploited to improve the
performance of memory allocators
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