
Prudent Memory Reclamation in
Procrastination-Based Synchronization

Aravinda Prasad & K Gopinath

Computer Science & Automation (CSA), Indian Institute of Science (IISc), Bangalore

{aravinda, gopi}@csa.iisc.ernet.in

EECS 2016 1



Synchronization via Procrastination

• Readers:

− Do not synchronize with writers
− Are wait free and scale linearly

• Writers:

− Copy the object and update the
copied version

− Wait for pre-existing readers
referring the old version to
complete

Example: Read-Copy-Update (RCU)

Ti
m

e

Q’

P RQ

Q’

RQ

Defer Free

P

Q’P R

-

P RQ

Allocate

Copy and Update

Grace Period

A deferred object is safe for freeing after the completion of all

pre-existing readers

2



Synchronization via Procrastination

• Readers:

− Do not synchronize with writers
− Are wait free and scale linearly

• Writers:

− Copy the object and update the
copied version

− Wait for pre-existing readers
referring the old version to
complete

Example: Read-Copy-Update (RCU)

Ti
m

e

Q’

P RQ

Q’

RQ

Defer Free

P

Q’P R

-

P RQ

Allocate

Copy and Update

Grace Period

A deferred object is safe for freeing after the completion of all

pre-existing readers

2



Synchronization via Procrastination from Memory
Allocator’s Point of View

• Frequent allocation and freeing of objects

• Object allocation is spread over an interval of time. Freeing occurs
in bursts

• Reclamation of safe deferred objects is

− Controlled by synchronization mechanism
− Oblivious of the memory allocator state

3



Impact of RCU on the SLUB1 allocator in the Linux kernel

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200

To
ta

l 
U

se
d
 M

e
m

o
ry

 (
G

B
y
te

s)

Time (Seconds)

out-of-memory

Test
Setup:

• Intel Xeon processor with 64 CPUs (4 sockets, 8 cores/socket,
2-way HT)

• 252 GB physical memory. Linux 3.17 kernel.

• Workload continuously performs update operation on 512 byte
objects

1SLUB is the recent allocator in the Linux kernel based on the slab allocator
4



Hints about the future

Deferred frees provide “precise hints” about the memory regions
that are about to be freed

Grace Period
Update b bc Free

Time

Hint

Given hints about the future, can dynamic memory allocators

perform better?

5



Hints about the future

Deferred frees provide “precise hints” about the memory regions
that are about to be freed

Grace Period
Update b bc Free

Time

Hint

Given hints about the future, can dynamic memory allocators

perform better?

5



The Prudence Dynamic Memory Allocator

The basic design principle is to have deferred objects visible and
processed in the memory allocator

Requirement Solution

Interface to defer the freeing of an
object

⇒ Export a new API to defer free an
object (free deferred())

Identify safe time to reclaim de-
ferred objects

⇒ Integrate synchronization mecha-
nism with Prudence

6



The Prudence Dynamic Memory Allocator

The basic design principle is to have deferred objects visible and
processed in the memory allocator

Requirement Solution

Interface to defer the freeing of an
object

⇒ Export a new API to defer free an
object (free deferred())

Identify safe time to reclaim de-
ferred objects

⇒ Integrate synchronization mecha-
nism with Prudence

6



Exploiting hints in Prudence

Reducing total fragmentation with hints

Total fragmentation = allocated
requested = slabs allocated × slab size

objects requested × object size

Slab A

Slab B

free allocated

...

...

(a) Without Hints

Slab A

Slab B

...

...

deferred object

(b) With Hints

Prudence selects slab A

7



Exploiting hints in Prudence

Reducing total fragmentation with hints

Total fragmentation = allocated
requested = slabs allocated × slab size

objects requested × object size

Slab A

Slab B

free allocated

...

...

(a) Without Hints

Slab A

Slab B

...

...

deferred object

(b) With Hints

Prudence selects slab A

7



Results - Endurance

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200

To
ta

l 
U

se
d

 M
e
m

o
ry

 (
G

B
y
te

s)

Time (Seconds)

out-of-memorySLUB
Prudence

Prudence does not suffer from high slab churns

8



Summary

Synchronization via procrastination has direct impact on the
performance of memory allocators

F Performance impact can be avoided by having deferred objects visible

to memory allocators

Deferred frees provide hints about the memory regions that are
about to be freed

F Optimizations based on hints can be exploited to improve the

performance of memory allocators

9



Questions?

Reference:

“Prudent Memory Reclamation in Procrastination-Based
Synchronization”, Aravinda Prasad, K Gopinath, ASPLOS 2016

10



Thank you!!

11




