Crowdfunding Public Projects with Provision Point: A Prediction Market Approach

Praphul Chandra, Sujit Gujar, Y. Narahari Indian Institute of Science.

April'2016

Crowdfunding: Private Provisioning of Public Goods

Crowdfunding Process

- 1. Requester posts public project (non-excludable)
- Agents arrive & observe (i) target (provision point),
 (ii) deadline & (iii) pending amount.
- 3. Agents contribute (or not)
- 4. Requester executes project or refunds.

Motivation for Mechanism Design

- Agent's true value for the project is private information.
- Strategic agents can freeride (No / Low contribution).
- Strategic agents can delay contribution.
- Project may not be funded even if everyone values it!
- Mechanism Design: Induce a game such that agents contribute

St Georges redevelopment alternative

9 Islington

The St Georges church in Tufnell Park is under threat of demolition to make way for a housing development. The local community want to present a redevelopment alternative to Save St George.

South Norwood Lake Playground

♥ Croydon

We want to update, regenerate and vastly improve the much-loved but tired children's playground at South Norwood Lake and Grounds

18%			
£1,784	£10,078	58	
pledged	goal	days le <mark>f</mark> t	

Related Work

[Bagnoli & Lipman '89] : Provision Point Mechanism

- a) Simultaneous move game
- b) Multiple Equilibria; Project not funded at several.

[Zubrickas '14] : Provision Point Mechanism with Refund

- a) Simultaneous move game
- b) Set of equilibria at which project is funded.

[Our work] : Provision Point Mechanism with Securities

- a) Sequential game
- b) Set of subgame perfect equilibria: project funded.
- c) Agents contribution proportional to their value
- d) Agents contribute as soon as they arrive

[Hanson'03], [Chen & Pennock '10] : Prediction Markets

- a) Software agents trading securities for predictions.
- b) Scoring Rule $\leftarrow \rightarrow$ Cost Function
- c) Specially suited for thin markets.

Our Work: Intuition

Incentivizes agents to contribute by offering them a bonus greater than their contribution.

Bonus paid out iff the project is not funded.

Ensures that project is funded at equilibrium.

Novel Idea: Use prediction markets for bonus!

Problem Setup

St Georges redevelopment alternative

♀ Islington

The St Georges church in Tufnell Park is under threat of demolition to make way for a housing development. The local community want to present a redevelopment alternative to Save St George.

82%			_
£670	£816	15	
pledged	goal	days left	

South Norwood Lake Playground

Croydon We want to update, regenerate and vastly improve the much-loved but tired children's playground at South Norwood Lake and Grounds

18% **£1,784 £10,078 58** pledged goal days left

Table 1. Key Notation			
Symbol	Definition		
T	Time at which fund collection ends		
h^t	Amount that remains to be funded at t ;		
	h^0 is the target amount		
$i \in \{0, 1, \dots, n\}$	Agent id; $i = 0$ refers to the requester		
$\theta_i \in \mathbb{R}_+$	Agent <i>i</i> 's value for the project		
$x_i \in \mathbb{R}_+$	Agent <i>i</i> 's contribution to the project		
$a_i \in [0, T]$	Time at which agent <i>i</i> arrives at the		
	platform		
$t_i \in [a_i, T]$	Time at which agent <i>i</i> makes a contri-		
	bution towards the project		
$\psi_i = (x_i, t_i)$	Strategy of agent <i>i</i>		
$\vartheta \in \mathbb{R}_+$	Net value for the project		
$\chi \in \mathbb{R}_+$	Net contribution for the project		
$k \in \{0, 1\}$	Project provisioning decision		

Table 1. Var Natation

 $u_i(\psi;\theta_i) = \mathcal{I}_{\chi \ge h^0} \times (\theta_i - x_i) + \mathcal{I}_{\chi < h^0} \times (r_i^{t_i} - x_i)$

Provision Point Mechanism with Securities (PPS)

Prediction Market in Crowdfunding

- Binary Event (At deadline, project funded or not?)
- Positive securities pay \$1 if project funded.
- Negative securities pay \$1 if project is not funded.
- Software agent always accepts trades.
- Price determined as the first order derivative of a cost function.

Complex Prediction Market in PPS: Issue only Negative securities

- Number of securities issued to an agent depend on
 - Quantum of his contribution
 - Timing of his contribution
- Sponsor* pays out only if project is not funded.

 $C_{LMSR}(\mathbf{q}) = b \ln(\exp(q_{\omega_0}/b) + \exp(q_{\omega_1}/b))$

$$C_0(q^t) = b\ln(1 + \exp(q^t/b))$$

$$\operatorname{Cost}(r^t | q^t) = C_0(q^t + r^t) - C_0(q^t)$$
$$= b \ln\left(\frac{1 + \exp(\frac{q^t + r^t}{b})}{1 + \exp(\frac{q^t}{b})}\right)$$

 $r_i^{t_i} = b \ln \left(\exp \left(\frac{x_i}{b} + \ln(1 + \exp(\frac{q^{t_i}}{b})) \right) - 1 \right) - q^{t_i}$

C

*PPS needs a sponsor to offer a refund bonus

Logarithmic Market Scoring Rule based PPS

Funded Utility

• Monotonically decreases with contribution

Unfunded Utility

- Monotonically increases with contribution
- Monotonically decreases with outstanding securities (time)

$$u_i(\psi;\theta_i) = \mathcal{I}_{\chi \ge h^0} \times (\theta_i - x_i) + \mathcal{I}_{\chi < h^0} \times (r_i^{t_i} - x_i)$$

Key Result: Project gets funded at equilibrium.

lf

- Net value of the project > Cost of the project
- b ε (0, (ϑ−h⁰)/ ln 2)

Then

- Project is funded at Equilibrium
- Equilibrium is subgame perfect (sequential game)
- Each agent contributes in proportion to his true value
- Each agent contributes as soon as he arrives
- Agents have an incentive to contribute early.

$$x_i^* \le C_0(\theta_i + q^{a_i}) - C_0(q^{a_i}) = b \ln\left(\frac{1 + \exp\left(\frac{\theta_i + q^{a_i}}{b}\right)}{1 + \exp(\frac{q^{a_i}}{b})}\right)$$

Necessary Conditions on Cost Functions

- 1. Path Independence
- 2. Continuous & Differentiable
- 3. Information Incorporation
- 4. No Arbitrage
- 5. Expressiveness
- 6. Bounded Loss
- 7. Sufficient Liquidity

 $Cost(\mathbf{r}|\mathbf{q}) = C(\mathbf{q} + \mathbf{r}) - C(\mathbf{q})$ $p_{\omega_i} = \partial C(\mathbf{q}) / \partial (q_{\omega_i}) \ge 0 \quad \forall \omega_j \in \Omega$ $C(\mathbf{q} + 2\mathbf{r}) - C(\mathbf{q} + \mathbf{r}) > C(\mathbf{q} + \mathbf{r}) - C(\mathbf{q})$ $\exists \omega_j \in \Omega \text{ such that } C(\mathbf{q} + \mathbf{r}) - C(\mathbf{q}) > \mathbf{r} \cdot \pi_{\omega_j}$ $\forall \mathbf{p} \in \Delta_{|\Omega|}, \exists \mathbf{q} \in \mathbb{R}^{|\Omega|} \text{ s.t. } \nabla C(\mathbf{q}) = \mathbb{E}_{\omega \sim \mathbf{p}}[\pi(\omega)].$
$$\begin{split} \sup_{\mathbf{q}} [\max_{\omega_j}(q_{\omega_j}) - C(\mathbf{q})] < \infty. \\ \forall q^{t_i}, \forall x_i < h^0, \quad \frac{\partial}{\partial x_i} (r_i^{t_i} - x_i) > 0 \Rightarrow \frac{\partial r_i^{t_i}}{\partial x_i} > 1. \end{split}$$

Quadratic Scoring Rule based PPS

Funded Utility

• Monotonically decreases with contribution

Unfunded Utility

- Monotonically increases with contribution
- Monotonically decreases with outstanding securities (time) : <u>with appropriate</u> <u>parameterization.</u>

 $u_i(\psi;\theta_i) = \mathcal{I}_{\chi \ge h^0} \times (\theta_i - x_i) + \mathcal{I}_{\chi < h^0} \times (r_i^{t_i} - x_i)$

- [Bagnoli and Lipman, 1989] Mark Bagnoli and Barton Lipman. Provision of public goods: Fully implementing the core through private contributions. The Review of Eco-nomic Studies, 56(4):583–601, 1989.
- [Hanson, 2003] Robin Hanson. Combinatorial informationmarket design. Information Systems Frontiers, 5(1):107–119, 2003.
- [Chen and Vaughan, 2010] Yiling Chen and Jennifer Wortman Vaughan. A new understanding of prediction mar-kets via no-regret learning. In Proceedings of the 11th ACM conference on Electronic commerce, pages 189–198. ACM, 2010.
- [Othman et al., 2013] Abraham Othman, David M Pennock, Daniel M Reeves, and Tuomas Sandholm. A practical liquidity-sensitive automated market maker. ACM Trans-actions on Economics and Computation, 1(3):14, 2013.
- [Zubrickas, 2014] Robertas Zubrickas. The provision point mechanism with refund bonuses. Journal of Public Eco-nomics, 120:231–234, 2014.

