Switched Capacitive Filter for Harmonic Suppression in Variable Speed Induction Motor Drives

Sumit Pramanick Under guidance of Prof. K. Gopakumar

Department of Electronic Systems Engineering Indian Institute of Science, Bangalore.

DESE, Indian Institute of Science, Bangalore, INDIA.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Outline

- Motivation
- Eliminating 5th and 7th order harmonics
- Problems to be addressed
- Capacitive filtering Ensuring an inverter to contribute zero active power
- Proposed Solution
- Experimental Results
- Related work done
- Summary
- Publications

2

3

・ロ・ ・ 『 ・ ・ ヨ ・ ・ 日 ・

Motivation

Effect of 5th and 7th order harmonics on Induction Motors

DESE, Indian Institute of Science, Bangalore, INDIA.

3

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣�(♡

Motivation

Effect of 5th and 7th order harmonics on Induction Motors

6th Harmonic flux ripple over the fundamental, resulting in torque ripple

3

э.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

DESE, Indian Institute of Science, Bangalore, INDIA.

Eliminating 5th and 7th order harmonics

12-sided Voltage Space Vectors(VSV)

Eliminating 5th and 7th order harmonics

Generating 12-sided VSV

- Two-level inverter feeding star connected 3-phase IM
- Hexagonal space vector structure
- Higher switching frequency required for harmonic suppression
- Bulky passive line filters required for harmonic suppresion

DESE, Indian Institute of Science, Bangalore, INDIA.

5 ∍

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Eliminating 5th and 7th order harmonics

Generating 12-sided VSV

K. K. Mohapatra, K. Gopakumar, V. T. Somasekhar, and L. Umanand, "A harmonic elimination and suppression scheme for an open-end winding induction motor drive," IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 1187-1198, Dec. 2003.

DESE, Indian Institute of Science, Bangalore, INDIA.

- Eliminating 5th and 7th order harmonics for the full speed range of the induction motor
- Avoiding multiple DC supplies
- Avoiding bulky passive line filters
- Avoiding any offline computation and requirement for look-up tables (required in Selective Harmonic Elimination)
- Shifting high frequency switching to low voltage stress devices
- Increasing the linear modulation range of the inverter

6

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

Capacitive Filtering

Ensuring Zero Active Power by Inverter-2

Proposed Solution

Power Circuit

- Multiple power supply
- Active power contribution from the secondary inverter

- DC supply of secondary inverter substituted by capacitor
- No active power contribution from secondary inverter
- Capacitor fed inverter operates as filter

・ロト ・ 四ト ・ ヨト ・ ヨト

8

DESE, Indian Institute of Science, Bangalore, INDIA.

Proposed Solution

Vector Construction

Proposed Solution

Capacitor Voltage Control

- V₆' and V₅' having opposing effect on the capacitor for a particular load current direction
- Capacitor voltage controlled by controlling duty ratio k

DESE, Indian Institute of Science, Bangalore, INDIA. 10

(ロト (聞) (ヨト (ヨト

20Hz

Phase Voltage-(200V/div), 2. Inv-1 Pole Voltage-(200V/div)
 Inv-2 Pole Voltage-(100V/div), 4. Phase current-1A/div.
 X-axis: 10ms/div

DESE, Indian Institute of Science, Bangalore, INDIA.

11

・ロト ・聞 ト ・ヨト ・ヨト

40Hz

Phase Voltage-(200V/div), 2. Inv-1 Pole Voltage-(200V/div)
 Inv-2 Pole Voltage-(100V/div), 4. Phase current-1A/div.
 X-axis: 5ms/div

DESE, Indian Institute of Science, Bangalore, INDIA.

・ロット (雪) (日) (日)

50Hz

Phase Voltage-(200V/div), 2. Inv-1 Pole Voltage-(200V/div)
 Inv-2 Pole Voltage-(100V/div), 4. Phase current-1A/div.
 X-axis: 5ms/div

DESE, Indian Institute of Science, Bangalore, INDIA.

50Hz

DESE, Indian Institute of Science, Bangalore, INDIA.

13

Capacitor Ripple at 40Hz

Phase Voltage-(200V/div), 2. Inv-1 Pole Voltage-(200V/div)
 Capacitor Ripple voltage-(5V/div), 4. Phase current-2A/div.
 X-axis: 5ms/div

DESE, Indian Institute of Science, Bangalore, INDIA.

14

・ロット (雪) (日) (日)

Capacitor Control at 40Hz

 T_A voltage controller reset; T_B controller switched ON

Phase Voltage-(50V/div), 2. DC-BusVoltage-(50V/div)
 Capacitor voltage-(20V/div), 4. Phase current-0.5A/div.
 X-axis: 1s/div

DESE, Indian Institute of Science, Bangalore, INDIA.

15

Starting Transients at 40Hz

Phase Voltage-(50V/div), 2. DC-BusVoltage-(50V/div)
 Capacitor voltage-(20V/div), 4. Phase current-2A/div.
 X-axis: 1s/div

DESE, Indian Institute of Science, Bangalore, INDIA.

16

Vector Control Speed Reversal (-48Hz - 48Hz)

1: Machine speed(2500rpm/div), 2: Rotor position(6.28rad/div) 3: Filter capacitor voltage(100V/div), 4: Phase Current(2A/div) Timescale: 1s/div

DESE, Indian Institute of Science, Bangalore, INDIA.

17

・ロット (雪) (日) (日)

Switching Frequency Comparison between Inverters

Frequency(Hz)	Switching Frequency(Hz)	
	Inverter-1	Inverter-2
10	180	360
20	360	720
30	540	1080
40	720	1440

- ► Higher switching frequency required in conventional 2-level inverter to **suppress** $6n \pm 1$ order harmonics
- Voltage stress across switches of secondary inverter is almost one third of that of primary inverter.

18

Related Work Done

Capacitive Filtering for Star Connected Induction Motor

DESE, Indian Institute of Science, Bangalore, INDIA.

・ロン ・ 聞 > ・ ヨ > ・ ヨ > … ヨ

Related Work Done

Capacitive Filtering Applied to form 3-level 12-sided VSV

DESE, Indian Institute of Science, Bangalore, INDIA.

20

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Summary

- Dodecagonal voltage space vector realized using single DC supply
- Complete elimination of the 5th and 7th order harmonics for the full speed range of the drive, including six-step operation of the primary inverter
- Increase in linear modulation range (45.3Hz to 48.8Hz)
- Higher switching frequency shifted to low voltage switches resulting in lesser switching loss
- No pre-charging circuitry required for the capacitor. Capacitor voltage inherently controlled by the PWM
- Proposed capacitive filtering scheme has been tested with rotor field oriented vector control with tight capacitor voltage control

21

Publications

- S. Pramanick, N. Abdul Azeez, S. Kaarthik, K. Gopakumar, and C. Cecati, "Low order harmonic suppression for open-end winding IM with dodecagonal space vector using a single dc-link supply", *IEEE Trans. Ind. Electron.*, vol. 62, issue 99, pp. 5340-5347, 2015.
- S. Pramanick, S. Kaarthik, N. Abdul Azeez, K. Gopakumar, S. Williamson and K. Rajashekara, "A Harmonic Suppression Scheme for Full Speed Range of a Two Level Inverter Fed Induction Motor Drive using Switched Capacitive Filter", *IEEE Trans. Power Electron.*, 2016
- S. Pramanick, M. Boby, N. Abdul Azeez, K. Gopakumar and S. Williamson, "A 3-Level Dodecagonal Space Vector based Harmonic Suppression Scheme for Open-End Winding IM Drives with Single DC Supply," *IEEE Trans. Ind. Electron.*, vol. PP, no. 99, pp. 11, 2016.

DESE, Indian Institute of Science, Bangalore, INDIA.

22

THANK YOU

DESE, Indian Institute of Science, Bangalore, INDIA.

23

3

・ロン・(語)とく語 とくほう