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Motivation



Ingredients of multihop sensor networks

• Sensor nodes: equipped with multiple sensor modules, finite

battery, finite storage, energy harvesting devices, and typically has a

single antenna radio interface.
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robustness, quick and easy network deployment, energy efficient
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A few pre-deployment challenges

In most scenarios nodes are not mobile. Therefore, we need to plan the

network in advance, for example,

• How many sensor nodes are needed?

• How powerful should they be?

• How many gateway nodes are needed?

• Where to locate the nodes?
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How to deploy?

viable locations
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System model



A utility function

• Time is divided into slots of length σ.

• di (t) : fraction of time sensor node is sensing the environment in the

tth slot.

• Let us define limT→∞
1
T

∑T
t=1 di (t) = di - fraction of time sensor

node i senses. We define the utility as
∑

i∈N Ui (di ); Ui s are

increasing concave utility function.

• We use this utility function to compare and contrast different

deployment scenarios
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Evolution of the battery level

• Let bj(t) denote the battery level at node j , at the beginning of the

tth slot.

• Let ehj (t) be the amount of energy harvested by node j in the tth

slot.

• es and e denote the energy consumed for sensing and active radio.

• bmin be the minimum battery level.

• ykl(t) part of flow from node k that is sent over link l in the tth slot.

Then, the evolution of the battery level is given as follows:

bj(t + 1) = min
{
bmax , bj(t) + ehj (t)− es · dj(t)

−
∑
k∈N

e ·
( ∑

l∈O(j)

ykl(t) +
∑
l∈I(j)

ykl(t)
)}
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Evolution of the data queue

• The nodes have a finite buffer size of qmax units.

• In the tth slot, sensor node i produces r s · di (t) units of data.

• The evolution of the data queue is given as follows:

qi (t + 1) = min
{
qmax , qi (t) + r s · di (t)

+
∑
k∈N

∑
l∈I(k)

ykl(t)−
∑
k∈N

∑
l∈O(k)

ykl(t)
}
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Capacity and scheduling constraints

• Let cl(t) be the capacity of link l , in the tth slot. Then, we have∑
k∈N

ykl(t) ≤ cl(t)

• We have assumed the node-exclusive interference model. Conflicting

links cannot be scheduled simultaneously. This can be captured

using the notion of maximal independent sets (MIS). Let aI (t) be

the fraction of time MIS I is active, in the tth slot. Then, we have∑
I

aI (t) ≤ 1
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Problem formulation



Long term time-averaged system

• In such WSN, the goal is to come up with optimal decision rules

{d(t),Y(t), a(t), t ≥ 1}; usually posed as Markov decision process

(MDP).

• However, in our setting, the reward depends on the long-term

time-averaged quantities {d1, d2, · · · , dn}.
• This enables us to look at the long-term time-averaged system.

• It can be shown that the long-term time-averaged system under

consideration should satisfy the following necessary condition

es · dj +
∑
k∈N

e ·
( ∑

l∈O(j)

ykl +
∑
l∈I(j)

ykl
)
≤ ehj ∀j ∈ N (1)

• The above equation states that the rate of energy consumption

should be less than or equal to the rate of energy harvesting.
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Long term time-averaged system

∑
l∈O(j)

yjl = r s · dj ,
∑
l∈I(j)

yjl = 0 ∀j ∈ N

no accumulation at the sources
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Long term time-averaged system

∑
s∈S

∑
l∈I(s)

yjl = r s · dj ∀j ∈ N

no packet drops∑
l∈I(j)

ykl =
∑

l∈O(j)

ykl ∀j ∈ N ,∀k ∈ N \ {j}

flow conservation∑
k∈N

ykl ≤ (M · a)l

rate of flow on link ≤ effective link capacity∑
I

aI ≤ 1

two different MIS cannot be active simultaneously
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An optimization problem

P1 : max
{a≥0, Y≥0, d∈[0,1]|N|}

∑
j∈N

Uj(dj)

Subject to:∑
l∈O(j)

yjl = r s · dj ,
∑
l∈I(j)

yjl = 0 ∀j ∈ N (2)

∑
s∈S

∑
l∈I(s)

yjl = r s · dj ∀j ∈ N (3)

∑
l∈I(j)

ykl =
∑

l∈O(j)

ykl ∀j ∈ N ,∀k ∈ N \ {j} (4)

es · dj +
∑
k∈N

e ·
( ∑

l∈O(j)

ykl +
∑
l∈I(j)

ykl
)
≤ ehj ∀j ∈ N (5)

∑
k∈N

ykl ≤ (M · a)l (6)∑
I

aI ≤ 1 (7)
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An alternate formulation



How to avoid computing matrix M?

• Replace the MIS constraints with the following clique constraints.

Fc ≤ 1

where F is the contention matrix.

• For the node-exclusive interference model, the clique constraints can

be written as ∑
l∈I(j)∪O(j)

∑
k∈N ykl(t)

c0l
≤ 1 ∀j ∈ N (8)

• We note that for the node-exclusive interference model, F has a

computational complexity of O(|L|). Clique constraints are

computationally scalable. However, they are necessary but not

sufficient.
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An alternate optimization problem

P2 : max
{a≥0, Y≥0, d∈[0,1]|N|}

∑
j∈N

Uj(dj)

Subject to:∑
l∈O(j)

yjl = r s · dj ,
∑
l∈I(j)

yjl = 0 ∀j ∈ N (9)

∑
s∈S

∑
l∈I(s)

yjl = r s · dj ∀j ∈ N (10)

∑
l∈I(j)

ykl =
∑

l∈O(j)

ykl ∀j ∈ N ,∀k ∈ N \ {j} (11)

es · dj +
∑
k∈N

e ·
( ∑

l∈O(j)

ykl +
∑
l∈I(j)

ykl
)
≤ ehj ∀j ∈ N (12)

Fc ≤ 1 (13)∑
I

aI ≤ 1 (14)
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A solution approach

• After replacing the MIS constraint with computationally tractable

Clique constraints, we obtain a new optimization problem (problem

P2).

• Problem P2 satisfies Slater’s condition. Therefore, we can solve it by

solving its dual obtained by relaxing the energy and the capacity

constraints.

min
β≥0,γ≥0

D(β,γ) (15)

where

D(β,γ) = max
d,Y,c

{∑
j∈N

(
Uj (dj ) + βj ·

(
ej − esdj −

∑
k∈N

e ·
( ∑

l∈O(j)

ykl +
∑

l∈I(j)

ykl
)))

+
∑
l∈L

γl

(
cl −

∑
k∈N

ykl
)}

(16)

Subject to: flow and clique constraints, c ≥ 0, Y ≥ 0, d ∈ [0, 1]|N|

• The Lagrange multipliers in the dual can be interpreted as prices.
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A solution approach

• Following standard approaches, this dual can be decomposed into

two sub-problems that can be solved independent of each other.

• Scheduling subproblem

max
c≥0

γTc subject to Fc ≤ 1

• Joint sensing fraction allocation and routing subproblem

max
d,Y

{∑
j∈N

(Uj(dj)− βjesdj)−
∑
k∈N

∑
l∈L

γl · ykl

−
∑
k∈N

∑
j∈N

βj · e ·

 ∑
l∈O(j)

ykl +
∑
l∈I(j)

ykl

}
(17)

Subject to: Y ≥ 0, d ∈ [0, 1]|N| and flow conservation equations
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A solution approach

• Joint sensing fraction allocation and routing subproblem

dj(β,γ) =
[
U

′−1 (
βj · es + r s · c lcpj (β,γ)

)]∗
where c lcpj is the cost of least-cost path and is given as

c lcpj = arg min
s∈S

min
P∈Pjs

( ∑
l∈P∩L

γl + 2e ·
∑

k∈P∩N

βk

)

• Scheduling subproblem can be solved using linear programming.

• Let p = [β,γ]T denote the price vector. Then, the price vector can

be updated using the projected subgradient method as follows

p[m + 1] = [p[m]− δ · g(p[m])]+
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Sufficiency of the clique constraints with respect to the

optimal utility

Clique constraints are not sufficient to ensure conflict free schedules.

However, we show that they are sufficient to optimally solve our initial

resource allocation problem. As a consequence of this, we have the

following propositions.

Proposition 1:

The optimal values of problems P1 and P2 are equal.

Proposition 2:

The projected subgradient method can be made to converge to an ε-band

around the optimal solution of problem P1.
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Proof of Proposition 1 — an outline
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Proof of Proposition 1 — an outline

Let βj = 1∀j ∈ N and γl = 1∀l ∈ L
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Proof of Proposition 1 — an outline

Observation: The collection of least cost paths forms a forest
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Proof of Proposition 1 — an outline

• Since clique constraints are necessary but not sufficient, we have

Popt
1 ≤ Popt

2 .

• To show that Popt
1 ≥ Popt

2 , consider an optimal price vector [β∗,γ∗].

• Consider the collection of least cost path from the nodes to the sink

nodes.

• Remove every other links in the network (these are not part of the

optimal route).

• The resulting network is a forest - a perfect graph.

• For a perfect graph, clique constraints are sufficient to ensure

conflict-free schedules. Therefore, one can find valid schedules on

the reduced network.

• The schedules in the reduced network remain valid in the original

network.
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Numerical evaluation
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Figure 1: Network G1
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Figure 2: Optimal routes
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Numerical evaluation
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Figure 6: Optimal routes
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