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Voting Setting

I A set C of m candidates

I A set V of n votes

I Vote - a complete order over C

I Voting rule - r : L(C)n −→ C

Example

I C = {x, y, z}

I Votes
X Vote 1: x > y > z

X Vote 2: z > y > x

X Vote 3: x > z > y

Plurality rule: winner is candidate with
most top positions

Plurality winner: x



Example: Scoring Rules

Scoring Rule

I Score vector: (α1, . . . , αm) ∈ Rm

I A vote x1 > x2 > · · · > xm⇒ xi gets scoreαi

I Winner: candidate with the highest score

Important Special Cases

I Plurality: (1, 0, · · · , 0)

I Veto: (0, · · · , 0,−1)

I Borda: (m− 1,m− 2, · · · , 0)
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Thesis: Algorithms and Social Choice Theory

Winner Determination Manipulation

Winner Predic-
tion [AAMAS 2015]

Margin of Victory Es-
timation [IJCAI 2015]

Winner Determination in
Streaming [PODS 2016]

Committee Selec-
tion with Outliers

Preference Elicitation for
Single Peaked Preferences

on Trees [IJCAI 2016]

Preference Elicitation
for Single Crossing

Profiles [IJCAI 2016]

Manipulation Detec-
tion [AAMAS 2015]

Kernelization of Possi-
ble Winner and Coali-

tional Manipulation
[AAMAS 2015, TCS 2016]

Frugal Bribery [AAAI 2016]

Manipulation under Partial
Information [IJCAI 2016]



Winner Determination in a Stream of Votes

To appear: ACM SIGMOD conference on Principles of DB Systems (PODS-16)
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Data Stream

I Suitable model for many large sources of data
X Stream of network packets

X Sensor networks

I Impractical and undesirable to store and process the entire data
exactly

X Instead design algorithms to find approximate solutions

X Quickly build summary with one pass over data

I Active area of research for last 15 years, history goes back 35 years



(ε, ϕ)-Plurality

Let 0 < ε < ϕ < 1 and fi be the plurality score of candidate i

Problem Definition

Find a set S of candidates with the following property:
I S contains every candidate i with fi > ϕn

I S contains no candidates j with fj < (ϕ− ε)n
Moreover, for every candidate i ∈ S, output an estimate f̃i such that
|fi − f̃i| 6 εn
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(ε, ϕ)-Plurality

Let 0 < ε < ϕ < 1 and fi be the plurality score of candidate i

Problem Definition

Find a set S of candidates with the following property:
I S contains every candidate i with fi > ϕn

I S contains no candidates j with fj < (ϕ− ε)n
Moreover, for every candidate i ∈ S, output an estimate f̃i such that
|fi − f̃i| 6 εn

Output all popular candidates

Don't output any unpopular candidate

Estimate plurality score
of popular candidates This problem is popularly known as (ε, ϕ)-

Heavy hitters in the streaming literature



Main Theorem

We show that space complexity of (ε, ϕ)-Plurality is∗ :

Θ
(

1
ε
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ϕ

log n + log log m
)

with O(1) worst case update and query response times. Our algorithm is
randomized

∗If n >
( 1
ε

)1.0001
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with O(1) worst case update and query response times. Our algorithm is
randomized

I Resolves a 30 years old open question in data
streaming literature

I Resolving this was mentioned as a key research
challenge in IITK Workshop on Data Streams (2006)
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Other Results
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Optimal upto O(log log ε−1)

Optimal upto O(1)

Optimal upto O(log2 n)
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