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Introduction

TCP is a dominant transport protocol which provides

reliable, in-order, end-to-end data transfer,

congestion and flow control,

fair allocation of resources.

TCP congestion control has two phases:

Slow start, Wn < ssthres

Congestion avoidance, Wn ≥ ssthres
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High Speed TCP variants

AIMD TCP prevents congestion and is ‘fair’. However, · · ·
TCP does not distinguish between non-congestion losses and
congestion losses.

poor performance in wireless environment.

For high speed networks, AIMD TCP is too slow.

inefficient link usage in large BDP networks.

High speed TCP variants use adaptive window increments

efficiently use links,

take lesser time to recover from losses.

We consider two widely used TCP variants: TCP CUBIC and TCP
Compound.
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TCP CUBIC

TCP CUBIC

Default Linux TCP algorithm since 2006.
TCP CUBIC Window Evolution:

Wcubic (W0, t) = C(t − 3
√

(W0β/C))3 +W0. (1)

W0: window size at the last loss epoch

t: time since last loss; β: the multiplicative drop factor

If loss, the window size is reduced by a factor of (1− β).

Also uses

Wreno(W0, t) = W0(1− β) + 3
β

2− β

t

R
. (2)
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TCP Compound

TCP Compound

It is used by Windows servers.

Wn : Window size at end of nth RTT.

The TCP Compound window size is given by

Wn+1 =

{

Wn + αW k
n , if no loss

Wn

2 , if loss is detected;
(3)
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Our Contribution

Our Contribution

TCP throughput has been evaluated using Markov models and
deterministic periodic loss-based models.

The Markov models typically assume random i.i.d. packet losses.

The assumption of random losses is reasonable in wireless networks.

The Markov models in previous literature are more exact than
deterministic periodic loss-based models.

However the Markov models are only numerically evaluated.

We derive a closed-form approximation for TCP throughput under
random losses for TCP CUBIC and TCP Compound.
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System Model

We have a single long-lived TCP flow with constant RTT, R .
Each packet of the flow is dropped w.p. p independently of the other
packets.
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Stationarity of the Window Size Process
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Illustrating Notation for window size at loss epochs, RTT epochs etc.
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Wn(p) : Window size at the end of nth RTT.

Vk(p) : Window size at the end of k th loss epoch.

G
p

Vk(p)
: Time between the k th and the (k + 1)st loss epochs.

Stationarity of {Wn(p)} process

We show that for packet loss rate, p ∈ (0, 1), the window size process,
{Wn(p)} has a unique stationary distribution and has finite mean

under stationarity for TCP CUBIC and TCP Compound.
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Asymptotic Approximations

As p → 0, Wn(p) → ∞. However, if we consider an appropriately scaled
version of {Wn(p)}, we can derive some useful results. For the time
between losses, we have

TCP Comp.: For x ≥ 1, p
1−k
2−k G

p

⌊ x

p

1
2−k

⌋

w−→ G x , as p → 0, with

P(G x ≥ y) = fctcp(α, k , x , y).

TCP CUBIC: For x ≥ 1, p
1
4G

p

⌊ x

p
3
4

⌋

w−→ G x , as p → 0, where

P(G x ≥ y) = fcubic (C ,R , x , y).

For the {Vk(p)} process, (with {V k}, a Markov process with transitions
dependent on G

V k−1
), as p → 0,

TCP Comp.: If limp→0 p
1

2−k V0(p)
w−→ V 0, {p

1
2−k Vn(p)} w−→ {V n}.

TCP CUBIC: If limp→0 p
3
4V0(p)

w−→ V 0, {p
3
4Vn(p)} w−→ {V n}.
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Throughput Approximation

Now, E[W (p)] =
1
p

E[Gp

V (p)
]

TCP Compound: By simulations we get, 1
E[G

V∞

]
= 0.257.

Therefore for small p,

E[W (p)] ≈ 0.257p−
1

2−k , (4)

TCP CUBIC: By simulations, we get 1
E[G

V∞

]
= 1.3004, for R = 1,

Hence,

E[W (p)] ≈ max
{

1.3004
(R

p

)
3
4
,
1.31√

p

}

. (5)
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Summary

We derive throughput approximations for TCP CUBIC and TCP
Compound under random losses via analytical models.

Our model approximations have been validated by ns2 simulations.

Our model results are as accurate as the more exact (compared to
fluid models) Markov models.

For TCP Compound, all model results are close to simulation results.

Our model for TCP CUBIC (in the cubic mode of operation) is more
accurate than the fluid approximation.

Visit poster for simulation results and other details. Thank you.
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