

Modeling and Analysis of Networks with High-speed TCP Connections

Sudheer Poojary Vinod Sharma

Department of ECE, Indian Institute of Science, Bangalore

April 21, 2016

1 Introduction

2 Our Contribution

3 System Model

4 Asymptotic Approximations

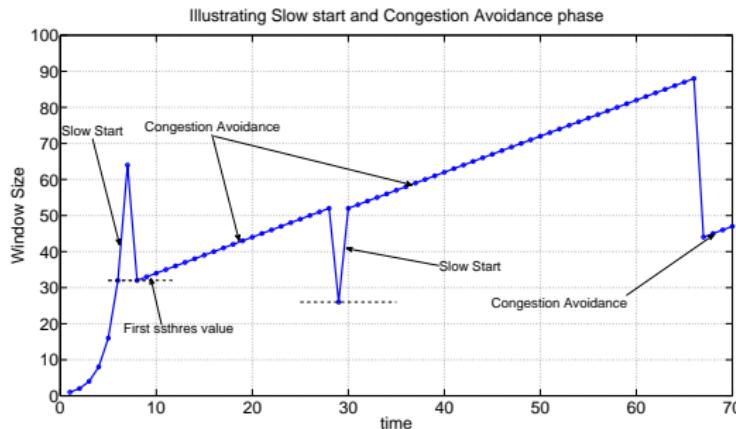
Introduction

TCP is a dominant transport protocol which provides

- reliable, in-order, end-to-end data transfer,
- congestion and flow control,
- fair allocation of resources.

TCP congestion control has two phases:

- **Slow start**, $W_n < ssthres$
- **Congestion avoidance**, $W_n \geq ssthres$



High Speed TCP variants

AIMD TCP prevents congestion and is 'fair'. However, . . .

- TCP does not distinguish between non-congestion losses and congestion losses.
 - **poor performance in wireless environment.**
- For high speed networks, AIMD TCP is too slow.
 - **inefficient link usage in large BDP networks.**

High speed TCP variants use adaptive window increments

- efficiently use links,
- take lesser time to recover from losses.

We consider two widely used TCP variants: TCP CUBIC and TCP Compound.

TCP CUBIC

Default Linux TCP algorithm since 2006.

TCP CUBIC Window Evolution:

$$W_{cubic}(W_0, t) = C(t - \sqrt[3]{(W_0 \beta / C)})^3 + W_0. \quad (1)$$

- W_0 : window size at the last loss epoch
- t : time since last loss; β : the multiplicative drop factor
- If loss, the window size is reduced by a factor of $(1 - \beta)$.

Also uses

$$W_{reno}(W_0, t) = W_0(1 - \beta) + 3 \frac{\beta}{2 - \beta} \frac{t}{R}. \quad (2)$$

TCP Compound

- It is used by Windows servers.
- W_n : Window size at end of n^{th} RTT.
- The TCP Compound window size is given by

$$W_{n+1} = \begin{cases} W_n + \alpha W_n^k, & \text{if no loss} \\ \frac{W_n}{2}, & \text{if loss is detected;} \end{cases} \quad (3)$$

Our Contribution

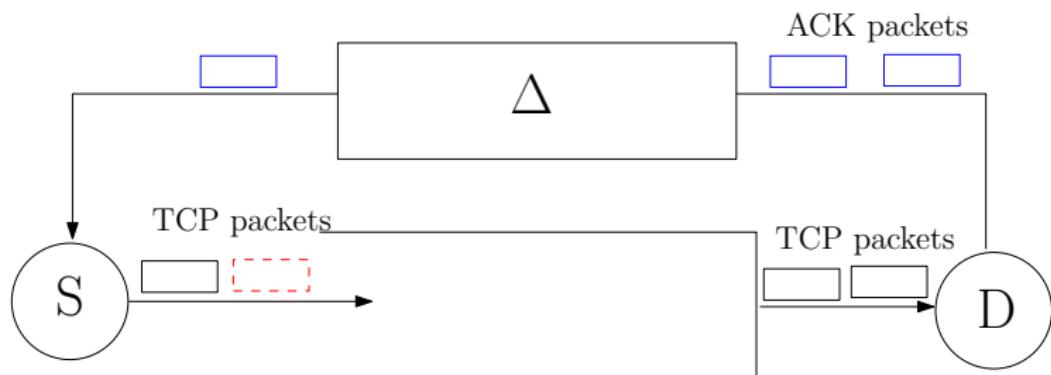
Our Contribution

- TCP throughput has been evaluated using Markov models and deterministic **periodic loss-based models**.
- The Markov models typically assume **random i.i.d. packet losses**.
- The assumption of random losses is reasonable in wireless networks.
- The Markov models in previous literature are **more exact** than deterministic periodic loss-based models.
- However the Markov models are only **numerically evaluated**.
- We derive a **closed-form** approximation for TCP throughput under random losses for TCP CUBIC and TCP Compound.

System Model

We have a single long-lived TCP flow with **constant RTT, R** .

Each packet of the flow is dropped w.p. p independently of the other packets.

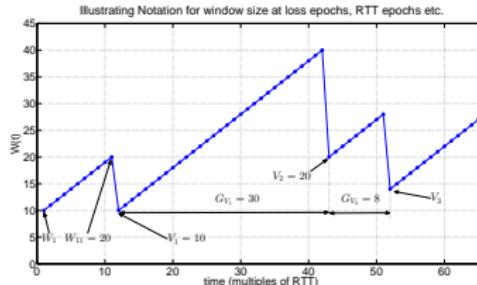


S: Source

D: Destination

: Lost packet

Stationarity of the Window Size Process



- $W_n(p)$: Window size at the end of n^{th} RTT.
- $V_k(p)$: Window size at the end of k^{th} loss epoch.
- $G_{V_k(p)}^p$: Time between the k^{th} and the $(k + 1)^{st}$ loss epochs.

Stationarity of $\{W_n(p)\}$ process

We show that for packet loss rate, $p \in (0, 1)$, the window size process, $\{W_n(p)\}$ has a **unique stationary distribution** and has **finite mean under stationarity** for TCP CUBIC and TCP Compound.

Asymptotic Approximations

As $p \rightarrow 0$, $W_n(p) \rightarrow \infty$. However, if we consider an appropriately scaled version of $\{W_n(p)\}$, we can derive some useful results. For the time between losses, we have

- TCP Comp.: For $x \geq 1$, $p^{\frac{1-k}{2-k}} G_{\lfloor \frac{x}{p^{\frac{1}{2-k}}} \rfloor}^p \xrightarrow{w} \overline{G}_x$, as $p \rightarrow 0$, with
 $\mathbb{P}(\overline{G}_x \geq y) = f_{tcp}(\alpha, k, x, y)$.
- TCP CUBIC: For $x \geq 1$, $p^{\frac{1}{4}} G_{\lfloor \frac{x}{p^{\frac{1}{4}}} \rfloor}^p \xrightarrow{w} \overline{G}_x$, as $p \rightarrow 0$, where
 $\mathbb{P}(\overline{G}_x \geq y) = f_{cubic}(C, R, x, y)$.

For the $\{V_k(p)\}$ process, (with $\{\overline{V}_k\}$, a Markov process with transitions dependent on $\overline{G}_{\overline{V}_{k-1}}$), as $p \rightarrow 0$,

- TCP Comp.: If $\lim_{p \rightarrow 0} p^{\frac{1}{2-k}} V_0(p) \xrightarrow{w} \overline{V}_0$, $\{p^{\frac{1}{2-k}} V_n(p)\} \xrightarrow{w} \{\overline{V}_n\}$.
- TCP CUBIC: If $\lim_{p \rightarrow 0} p^{\frac{3}{4}} V_0(p) \xrightarrow{w} \overline{V}_0$, $\{p^{\frac{3}{4}} V_n(p)\} \xrightarrow{w} \{\overline{V}_n\}$.

Throughput Approximation

Now, $\mathbb{E}[W(p)] = \frac{\frac{1}{p}}{\mathbb{E}[G_{V(p)}^p]}$

- TCP Compound: By simulations we get, $\frac{1}{\mathbb{E}[G_{V_\infty}]} = 0.257$.
Therefore for small p ,

$$\mathbb{E}[W(p)] \approx 0.257p^{-\frac{1}{2-k}}, \quad (4)$$

- TCP CUBIC: By simulations, we get $\frac{1}{\mathbb{E}[G_{V_\infty}]} = 1.3004$, for $R = 1$,
Hence,

$$\mathbb{E}[W(p)] \approx \max \left\{ 1.3004 \left(\frac{R}{p} \right)^{\frac{3}{4}}, \frac{1.31}{\sqrt{p}} \right\}. \quad (5)$$

Summary

- We derive **throughput approximations** for TCP CUBIC and TCP Compound under **random losses** via analytical models.
- Our model approximations have been validated by ns2 simulations.
- Our model results are as accurate as the more exact (compared to fluid models) Markov models.
- For TCP Compound, all model results are close to simulation results.
- Our model for TCP CUBIC (in the cubic mode of operation) is more accurate than the fluid approximation.

Visit poster for simulation results and other details. **Thank you.**