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1 Falcon is a Domain Specific Language (DSL) for writing
Graph algorithms.

2 Falcon

i) extends C programming language.
ii) provides additional data types for Graph processing.
iii) constructs for writing explicitly parallel graph algorithms.

3 Support for heterogeneous backends(CPU and GPU).

4 Supports parallel execution of different algorithms on multiple
devices.

5 Supports partitioning of Graph objects and execution of a
single algorithm using multiple devices. Used when graph
object does not fit in a single device.

6 Supports mutation of Graph object.

7 Allows viewing Graph in different way(say collection of
triangles).
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Language constructs for parallelization and Synchronization in Falcon

single(t1) {stmt block1} else {stmt
block2}

The thread that gets a lock on item t1 executes stmt block1 and other
threads execute stmt block2.

single(coll) {stmt block1} else {stmt
block2}

The thread that gets a lock on all elements in the collection executes
stmt block1 and others execute stmt block2.

Table 1. single statement(Synchronization) in Falcon
Data Type Iterator Description

Graph
points iterate over all points in graph

Graph edges iterate over all edges in graph
Graph pptyname iterate over all elements in new ppty.

Point
nbrs iterate over all neighboring points

Point outnbrs iterate over dst point of outgoing edges (Directed Graph)

Edge
nbrs iterate over neighbor edges

Set
item iterate over all items in Set

Collection
item iterate over all items in Collection

Table 2. Iterators for foreach(parallelization) statement in Falcon

parallel sections- for Multiple parallel regions on different devices.
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shortest path

1 int <GPU> changed = 0; // Variable on GPU
2 relaxgraph(Point <GPU>p, Graph <GPU>graph) {
3 foreach (t In p.outnbrs)
4 MIN(t.dist, p.dist + graph.getWeight(p, t), changed);

5 }
6 main(int argc, char *argv[]) {
7 Graph hgraph; // graph on CPU
8 hgraph.addPointProperty(dist, int);
9 hgraph.getType() <GPU>graph; // graph on GPU

10 hgraph.read(argv[1]); // read graph on CPU
11 graph = hgraph; // copy graph to GPU
12 foreach (t In graph.points)t.dist=MAX INT;//INFinity
13 graph.points[0].dist = 0; // source has dist 0
14 while( 1 ){
15 changed = 0;

16 foreach (t In graph.points) relaxgraph(t,graph);
17 if (changed == 0) break; //reached fix point

18 }
19 for (int i = 0; i <graph.npoints; ++i)
20 printf(”i=%d dist=%d\n”, i, graph.points[i].dist);

21 }
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Falcon Compiler Code Genaration (Synchronization and parallelization constructs)

Input
Falcon

DSL Code

Check for Falcon Synchro-
nization / Parallel Constructs

single
statement

parallel
sections

statement

foreach
statement

On
Collection

On
Collection

Convert to
OpenMP
parallel
sections

Single One item

Convert to Compare And
Swap(CAS) based code

Single Collection

Convert to code with barrier for
entire parallel region

If outermost foreach statement

GPU:Convert to CUDA kernel call
with Thrust library

CPU: Convert to parallel code us-
ing Galois Worklist

If outermost foreach statement

GPU: Convert to CUDA kernel call

CPU: Convert to OpenMP pragma

yes

no

no

yes
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GPUs
CPU
Heterogeneous execution

1 Using Falcon compiler we wrote algorithms like BFS, SSSP and
Boruvka’s-MST.

2 We wrote dynamic algorithms like Survey Propagation(SP),
Delaunay Mesh refinement(DMR) and Dynamic-SSSP in Falcon.

3 Performance of Falcon DSL codes were compared with
i) LonestarGPU-(ISS group at the University of Texas at Austin)
i) Galois- (ISS group at the University of Texas at Austin)
ii)Green-Marl- DSL (PP Laboratory, Stanford University)
iV)Totem( NetSysLab, University of British Columbia)

4 Totem- for comparing Performance on CPU, GPU and
heterogeneous execution.

5 Galois and Green-Marl for comparing Performance on CPU.
6 LonestarGPU for comparing Performance on GPU.
7 We were able to get performance close to and some times better than

above systems. Tested on a machine with 12-core CPU and 4-GPUs.
8 Publication- http://dl.acm.org/citation.cfm?id=2842618(ACM TACO,2015)
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Speedup over single threaded CPU code
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1 We have a introduced a new DSL for Graph algorithms which
targets heterogeneous architectures.

2 Programmer does not have to worry on target architecture ,
thread & memory management.

3 Future Works in mind
i) to extend it for CPU clusters.
ii) Making DSL more simple(say removing <GPU>tag).
iii) Support for non-Nvidia GPUs by providing OpenCL
backend.
iv) adding optimizations on Compiler.

4 for queries email me on unni c@csa.iisc.ernet.in.
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Questions??
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