

A Hybrid Seven Level Inverter Topology with a Single DC Supply and Reduced Switch Count

Arun Rahul. S Research Supervisor: Prof. K . Gopakumar Department of Electronic Systems Engineering (DESE), Indian Institute of Science, Bangalore, India.

Overview of presentation

HIDIAN INSTITUTE OF SCIENCE

- Adjustable speed AC drive systems
- Inverter topologies
- New seven level inverter topology
- Experimental results

Important modules of an adjustable speed AC drive system are,

- Rectifier
- Three phase Inverter
- AC motor

3 phase two level Inverter

Multilevel inverter topologies

Important advantages of multilevel inverters are,

- Reduced switching frequency
- Reduced EMI
- Improved voltage and current THD
- Reduced filtering requirements

Commonly used multilevel inverter topologies are,

- Diode clamped inverter
- Flying capacitor inverter
- Cascaded H-bridge inverter
- Hybrid multilevel inverter

Multilevel inverter topologies

Requires clamping diodesDC link capacitor voltage balancing is difficult

 As the number of voltage levels increases capacitor voltage balancing is difficult

- Modular structure
- Requires multiple DC supply for operation

Motivation for research

To develop a new multilevel inverter topology :

- With single DC supply
- Satisfactory over modulation operation
- Minimum number of switching devices
- Reduction in capacitance values

Proposed seven level inverter topology

 The proposed topology is realized by cascading two three level flying capacitor inverter using a half bridge module.

Analysis of inverter topology

- Five pair of complementary switches with 32 switching state for each phase.
- The inverter can generate 11 pole voltage levels:
 -5V_{dc}/6, -4V_{dc}/6, -3V_{dc}/6, -2V_{dc}/6, -V_{dc}/6, 0,V_{dc}/6, 2V_{dc}/6, 3V_{dc}/6, 4V_{dc}/6, and 5V_{dc}/6 with respect to DC bus mid point 'O'.

Seven level space vector polygon

- The proposed topology has 343(7³) pole voltage combinations.
- These pole voltage combinations give 127 space vector locations.

DESE, Indian Institute of Science, Bangalore, India

Salient features of proposed topology

- Requires only single DC supply
- Less number of switching devices
- Capacitor voltages can be balanced over a switching cycle

Comparison of proposed inverter topology with other seven level topologies

Inverter Topology	Capacitor (V _{dc} /6)	IGBT			Clamping	Power supplies			
		V _{dc} /2	V _{dc} /3	V _{dc} /6	Diodes	V_{dc}	V _{dc} /2	V _{dc} /3	V _{dc} /6
Proposed Topology	18	12	6	12	0	1	0	0	0
NPC	6	0	0	36	90	1	0	0	0
FC	45	0	0	36	0	1	0	0	0
СНВ	0	0	0	36	0	0			9

Level shifted carrier based PWM algorithm

Experiment specifications

- Synchronous PWM technique is implemented for inverter operation above 10Hz
- Motor control algorithm open-loop V/f control scheme
- IGBT module

- SKM75GB123D - TMS320F28335

- SPARTAN-3-XC3S200

- DSP module
- FPGA module
- Induction motor specification:
 - 3. 7 kW, 400 V, 50 Hz, 4-pole Stator resistance = 2.08Ω
 - Rotor Resistance = 4.19Ω
 - Stator Self inductance
 - Rotor self inductance

Magnetizing inductance = 0.272H

H₇

48.85-50 Hz

6

25 April 2016

Capacitor sizing

The capacitor sizing is done by using the relation,

$$C = \frac{I_p}{f_s * \Delta V}$$

where,

 I_p = peak capacitor current (10A)

 f_s = minimum sampling frequency (1800Hz)

 $\Delta V =$ peak to peak capacitor voltageripple (2.5V)

 For conducting the experiment, the capacitance value is selected as 2200 µF for all the three phases

Implementation block diagram

FPGA module is used as the PWM signal generator with dead time of 2. 5 us.

Experimental Results for steady state operation

Motor phase voltage, inverter pole voltage, capacitor voltage and motor current

(a) 30Hz (MI=0.6), x-axis: 10ms/div

(b) 40Hz (MI=0.8), x-axis: 5ms/div

y-axis: 1) Motor Phase voltage (V_{An}) :200V/div, 2) Inverter Pole voltage (V_{AN}): 200V/div, 3) V_{dc} /6 Capacitor voltage (V_{ca3}): 50V/div, 4) Phase current (I_a): 2A/div.

Experimental Results for steady state operation

Capacitor voltage ripple and motor phase current

(a) 10Hz (MI=0.2), x-axis: 50ms/div

(b) 40Hz (MI=0.8), x-axis: 10ms/div

y-axis: 1) $V_{dc}/2$ capacitor voltage ripple($\Delta Vca1$):2V/div, 2) $V_{dc}/3$ capacitor voltage ripple ($\Delta Vca2$): 2V/div, 3) $V_{dc}/6$ capacitor voltage ripple($\Delta Vca3$): 2V/div,4) Phase current (I_a):2A/div

Experimental Results for steady state

operation - Over modulation operation

Tracing all the space vector locations of outer hexagon at frequency 48 Hz for phase 'A'.

(a) 48Hz, x-axis-5ms/div

(b) 48Hz, x axis: 10ms/div

y-axis: (a) 1)Phase voltage (V_{An} :100V/div), 2) First flying capacitor pole voltage($V_{A'N}$: 100V/div), 3) Second flying capacitor pole voltage($V_{AA'}$:100V/div), 3) Phase current (I_a :2A/div)

(b) 1) $V_{dc}/2$ capacitor voltage ripple($\Delta Vca1$):2V/div, 2) $V_{dc}/3$ capacitor voltage ripple ($\Delta Vca2$): 2V/div, 3) $V_{dc}/6$ capacitor voltage ripple($\Delta Vca3$): 2V/div,4) Phase current (I_a):2A/div

Experimental Results of acceleration of motor

Sudden acceleration of motor from 10Hz to 40 Hz in 4s

x-axis: 1s/div, y-axis: 1) Phase voltage (V_{An}): 200 V/div, 2) V_{dc} /2 capacitor voltage (Vca1): 50V/div, 3) V_{dc} /3 capacitor DC voltage (Vca2): 20V/div, 4) Phase current (I_a):2A/div

19

Experimental Results - starting transients

Charging of capacitor voltages to the reference voltage for phase 'A' when inverter is switched on

x-axis: 200ms/div, y-axis Y-axis: 1) $V_{dc}/2$ capacitor voltage ripple($\Delta Vca1$):2V/div, 2) $V_{dc}/3$ capacitor voltage ripple ($\Delta Vca2$): 2V/div, 3) $V_{dc}/6$ capacitor voltage ripple($\Delta Vca3$): 2V/div,4) Phase current (I_a):5A/div

Experimental Results- capacitor voltage balancing algorithm testing

Capacitor voltage balancing is disabled at T_d and again enabled at T_e for A phase at 40Hz

x-axis: 500ms/div, y-axis Y-axis: 1) $V_{dc}/2$ capacitor voltage ripple($\Delta Vca1$):2V/div, 2) $V_{dc}/3$ capacitor voltage ripple ($\Delta Vca2$): 2V/div, 3) $V_{dc}/6$ capacitor voltage ripple($\Delta Vca3$): 2V/div,4) Phase current (I_a):5A/div.

- Conclusion
- A new 3 phase seven level inverter topology is developed by cascading two flying capacitor three level inverter with a half bridge module and experimental results are presented.
- A hysteresis controller based capacitor voltage balancing scheme is implemented and tested for various frequencies.
- Capacitor voltage balancing for the proposed topology can be obtained irrespective of the load current power factor and direction.
- The key advantages of proposed topology are
- Reduced number of switches
- Reduced capacitor sizing
- Single dc supply requirement and simple control.

Thank you