RLWS: A Reinforcement Learning
Based GPU Warp Scheduler

Jayvant Anantpur

RLWS: A Reinforcement Learning
based GPU Warp Scheduler

 Problem:

— At each cycle, schedule a warp from a pool of ready
warps (satisfying Dependency and Resource

Constraints)

— If no warp can be scheduled, the processor stalls

* Objective:

— Minimize the number of stalls

CUDA Programming Model

Code is executed on the GPU through
Kernel calls

Kernel calls specify execution
configuration called Grid

Grid specifies number of Thread
Blocks (TB) and size of a TB

Block (1, 1)

Threads of a TB partitioned into
groups of threads called Warps

dim3 b4, 3, 1);

gpuKernel <<<g, b>>>(..); Courtesy: www.nvidia.com

| GPU

Ferm

GRID

32133343536 (37]|38]39

aseyalu] }SoH

B2

TN

101111213 (14|15

9

16 (1718|1920 (21|22 |23

8

peayLebio

Y20

Courtesy: www.nvidia.com

Streaming Multiprocessor

CUDA Core

Fermi Streaming Multiprocessor (SM)

Courtesy: www.nvidia.com

Warp Scheduler

Warp 12 Instr 7 Stall

Warp Scheduling

 Selectinga warp in each cycle, depends on the next

instruction to be executed in the ready warps

e 3 different types of instruction pipelines

* Memory (latency 300+ cycles for global mem)
e Special Function (Latency ~20 — 100 cycles)

e ALU (~10 cycles)

Why RL-based Warp Scheduler?

o Different warps (both within a TB and across
TBs) execute the same code, i.e., same
sequence of instructions

— Except for data dependent execution paths

o SMs have seen execution of past TB

o Each SM can hold only a few resident TBs, and
new TBs come in the place of old (completed) TBs

o Intelligent scheduling needed to reduce stalls!

o Need to hide long memory stalls of one warp with
useful work from other warps!

RLWS

RL Agent — Warp Scheduler
State — GPU + State of Warps
Actions — Type of warp to schedule

Reward — For scheduling a warp, penalize for
stall cycle

Update function (SARSA)

_earning rate, Discount factor and Exploration
rate

Genetic Algorithm to Select RL
Configuration

o Very large desigh space

o To select state variables and their granularity
(number of discrete values)

o To select RL and other parameters

Experimental Evaluation

GPGPU-SIM to simulate CUDA benchmarks
CUDA 4.2

NVIDIA Fermi GPU architecture

Benchmarks from GPGPU-SIM, Parboil, CUDA
SDK and Rodinia benchmark suites

Results

 Used the best 10 RL configurations from our GA
* Used 15 kernels for learning the above configurations
 Ran 59 kernels and compared the speedup (over
existing warp schedulers)
 Best RL onfiguration gives
* 5% improvement over LRR
* 7 % improvement over TL
e 1%slowdown wrt GTO
* Beston 17 and second best on 30 kernels

Conclusion

RL based GPU warp Scheduler

Genetic Algorithm to search for the best set of
parameter values

Evaluated on a large set of kernels
RLWS found to work well “across the board”

