
RLWS: A Reinforcement Learning

Based GPU Warp Scheduler

Jayvant Anantpur

Nagendra G. D.

Shivaram Kalyankrishnan

R. Govindarajan

RLWS: A Reinforcement Learning
based GPU Warp Scheduler

• Problem:

– At each cycle, schedule a warp from a pool of ready

warps (satisfying Dependency and Resource

Constraints)

– If no warp can be scheduled, the processor stalls

• Objective:

– Minimize the number of stalls

• Code is executed on the GPU through
Kernel calls

• Kernel calls specify execution
configuration called Grid

• Grid specifies number of Thread
Blocks (TB) and size of a TB

• Threads of a TB partitioned into
groups of threads called Warps

dim3 g(3, 2, 1);

dim3 b(4, 3, 1);

gpuKernel <<<g, b>>>(…); Courtesy: www.nvidia.com

CUDA Programming Model

Fermi GPU

Courtesy: www.nvidia.com

Thread Block
Scheduler

Streaming
Multiprocessor

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

GRID

TB0

TB1

TB2

TB3

TB
30

TB
31

Residency of TBs
depends on resources

Streaming Multiprocessor

Courtesy: www.nvidia.com

Critical
Resources

Warp Scheduler

Warp 10 Instr 5

Warp 10 Instr 6

Stall

Warp 12 Instr 7

Warp 4 Instr 3

T
i

m
e

Warp
Scheduler

Warp 7 Instr 2

Stall

Warp 9 Instr 1

Warp 9 Instr 2

Warp 1 Instr 10

Warp
Scheduler

Support for
Fast Context

switch at
each cycle

Loose Round
Robin (LRR)

Greedy Then
Old (GTO)

Two Level
(TL)

Warp Scheduling

• Selecting a warp in each cycle, depends on the next

instruction to be executed in the ready warps

• 3 different types of instruction pipelines

• Memory (latency 300+ cycles for global mem)

• Special Function (Latency ~20 – 100 cycles)

• ALU (~10 cycles)

Why RL-based Warp Scheduler?

 Different warps (both within a TB and across
TBs) execute the same code, i.e., same
sequence of instructions
 Except for data dependent execution paths

 SMs have seen execution of past TB
 Each SM can hold only a few resident TBs, and

new TBs come in the place of old (completed) TBs

 Intelligent scheduling needed to reduce stalls!
 Need to hide long memory stalls of one warp with

useful work from other warps!

RLWS

• RL Agent – Warp Scheduler

• State – GPU + State of Warps

• Actions – Type of warp to schedule

• Reward – For scheduling a warp, penalize for
stall cycle

• Update function (SARSA)

• Learning rate, Discount factor and Exploration
rate

Genetic Algorithm to Select RL
Configuration

 Very large design space

 To select state variables and their granularity
(number of discrete values)

 To select RL and other parameters

Experimental Evaluation

• GPGPU-SIM to simulate CUDA benchmarks

• CUDA 4.2

• NVIDIA Fermi GPU architecture

• Benchmarks from GPGPU-SIM, Parboil, CUDA
SDK and Rodinia benchmark suites

Results

• Used the best 10 RL configurations from our GA

• Used 15 kernels for learning the above configurations

• Ran 59 kernels and compared the speedup (over
existing warp schedulers)

• Best RL onfiguration gives

• 5 % improvement over LRR

• 7 % improvement over TL

• 1 % slowdown wrt GTO

• Best on 17 and second best on 30 kernels

Conclusion

• RL based GPU warp Scheduler

• Genetic Algorithm to search for the best set of
parameter values

• Evaluated on a large set of kernels

• RLWS found to work well “across the board”

