
RLWS: A Reinforcement Learning 

Based GPU Warp Scheduler

Jayvant Anantpur

Nagendra G. D.

Shivaram Kalyankrishnan

R. Govindarajan



RLWS: A Reinforcement Learning 
based GPU Warp Scheduler

• Problem:

– At each cycle, schedule a warp from a pool of ready 

warps (satisfying Dependency and Resource 

Constraints)

– If no warp can be scheduled, the processor stalls

• Objective:

– Minimize the number of stalls



• Code is executed on the GPU through 
Kernel calls

• Kernel calls specify execution 
configuration called Grid

• Grid specifies number of Thread 
Blocks  (TB) and size of a TB

• Threads of a TB partitioned into 
groups of threads called Warps

dim3 g(3, 2, 1);

dim3 b(4, 3, 1);

gpuKernel <<<g, b>>>(…); Courtesy: www.nvidia.com

CUDA Programming Model



Fermi GPU

Courtesy: www.nvidia.com

Thread Block 
Scheduler

Streaming 
Multiprocessor

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

GRID

TB0

TB1

TB2

TB3

TB
30

TB
31

Residency of TBs 
depends on resources



Streaming Multiprocessor

Courtesy: www.nvidia.com

Critical 
Resources



Warp Scheduler

Warp 10 Instr 5 

Warp 10 Instr 6

Stall

Warp 12 Instr 7

Warp 4 Instr 3

T
i

m
e

Warp
Scheduler

Warp 7 Instr 2

Stall

Warp 9 Instr 1

Warp 9 Instr 2

Warp 1 Instr 10

Warp
Scheduler

Support for 
Fast Context 

switch at 
each cycle

Loose Round 
Robin (LRR)

Greedy Then 
Old (GTO)

Two Level 
(TL)



Warp Scheduling

• Selecting a warp in each cycle, depends on the next 

instruction to be executed in the ready warps

• 3 different types of instruction pipelines

• Memory (latency 300+ cycles for global mem)

• Special Function (Latency ~20 – 100 cycles)

• ALU  ( ~10 cycles)



Why RL-based Warp Scheduler?

 Different warps (both within a TB and across 
TBs)  execute the same code, i.e., same 
sequence of instructions   
 Except for data dependent execution paths 

 SMs have seen execution of past TB
 Each SM can hold only a few resident TBs, and 

new TBs come in the place of old (completed) TBs   

 Intelligent scheduling needed to reduce stalls!
 Need to hide long memory stalls of one warp with 

useful work from other warps!



RLWS

• RL Agent – Warp Scheduler

• State – GPU + State of Warps

• Actions – Type of warp to schedule

• Reward – For scheduling a warp, penalize for 
stall cycle

• Update function (SARSA)

• Learning rate, Discount factor and Exploration 
rate



Genetic Algorithm to Select RL 
Configuration

 Very large design space

 To select state variables and their granularity 
(number of discrete values)

 To select RL and other parameters



Experimental Evaluation

• GPGPU-SIM to simulate CUDA benchmarks

• CUDA 4.2 

• NVIDIA Fermi GPU architecture

• Benchmarks from GPGPU-SIM, Parboil, CUDA 
SDK and Rodinia benchmark suites



Results

• Used the best 10 RL configurations from our GA

• Used 15 kernels for learning the above configurations

• Ran 59 kernels and compared the speedup (over 
existing warp schedulers)

• Best RL onfiguration gives

• 5 % improvement over LRR 

• 7 % improvement over TL

• 1 % slowdown wrt GTO

• Best on 17 and second best on 30 kernels



Conclusion

• RL based GPU warp Scheduler

• Genetic Algorithm to search for the best set of 
parameter values

• Evaluated on a large set of kernels

• RLWS found to work well “across the board”




