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RLWS: A Reinforcement Learning 
based GPU Warp Scheduler

• Problem:

– At each cycle, schedule a warp from a pool of ready 

warps (satisfying Dependency and Resource 

Constraints)

– If no warp can be scheduled, the processor stalls

• Objective:

– Minimize the number of stalls



• Code is executed on the GPU through 
Kernel calls

• Kernel calls specify execution 
configuration called Grid

• Grid specifies number of Thread 
Blocks  (TB) and size of a TB

• Threads of a TB partitioned into 
groups of threads called Warps

dim3 g(3, 2, 1);

dim3 b(4, 3, 1);

gpuKernel <<<g, b>>>(…); Courtesy: www.nvidia.com

CUDA Programming Model



Fermi GPU

Courtesy: www.nvidia.com
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Streaming Multiprocessor

Courtesy: www.nvidia.com
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Warp Scheduler
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Warp Scheduling

• Selecting a warp in each cycle, depends on the next 

instruction to be executed in the ready warps

• 3 different types of instruction pipelines

• Memory (latency 300+ cycles for global mem)

• Special Function (Latency ~20 – 100 cycles)

• ALU  ( ~10 cycles)



Why RL-based Warp Scheduler?

 Different warps (both within a TB and across 
TBs)  execute the same code, i.e., same 
sequence of instructions   
 Except for data dependent execution paths 

 SMs have seen execution of past TB
 Each SM can hold only a few resident TBs, and 

new TBs come in the place of old (completed) TBs   

 Intelligent scheduling needed to reduce stalls!
 Need to hide long memory stalls of one warp with 

useful work from other warps!



RLWS

• RL Agent – Warp Scheduler

• State – GPU + State of Warps

• Actions – Type of warp to schedule

• Reward – For scheduling a warp, penalize for 
stall cycle

• Update function (SARSA)

• Learning rate, Discount factor and Exploration 
rate



Genetic Algorithm to Select RL 
Configuration

 Very large design space

 To select state variables and their granularity 
(number of discrete values)

 To select RL and other parameters



Experimental Evaluation

• GPGPU-SIM to simulate CUDA benchmarks

• CUDA 4.2 

• NVIDIA Fermi GPU architecture

• Benchmarks from GPGPU-SIM, Parboil, CUDA 
SDK and Rodinia benchmark suites



Results

• Used the best 10 RL configurations from our GA

• Used 15 kernels for learning the above configurations

• Ran 59 kernels and compared the speedup (over 
existing warp schedulers)

• Best RL onfiguration gives

• 5 % improvement over LRR 

• 7 % improvement over TL

• 1 % slowdown wrt GTO

• Best on 17 and second best on 30 kernels



Conclusion

• RL based GPU warp Scheduler

• Genetic Algorithm to search for the best set of 
parameter values

• Evaluated on a large set of kernels

• RLWS found to work well “across the board”




