Scalable Sparse Bayesian Nonparametric and Matrix Tri-factorization Models for Text Segmentation, Topical analysis and Entity Resolution in Dyadic data.

Ranganath B.N. ${ }^{1}$ and Shalabh Bhatnagar ${ }^{1}$
${ }^{1}$ Indian Institute of Science, Bangalore, India

April. 28th, 2016

Overview of the work

- To model sparsity for different applications
- Text segmentation, topical analysis and entity resolution in dyadic data
- Traditional approaches do not consider sparsity.
- Sparse relationships between the domain entities and the latent components of the data.
- Modeling sparse relationships
- Extracts relevant information.
- Scalable solution.
- Bayesian Nonparametric and matrix trifactorization approaches

Block Exchangeable model (BEM):Segmentation

- Segmentation of collections of sequence data
- Laptop review dataset in to facets
- News dataset in to stories.
- Occurence of facets or the stories
- Order independent
- Persistence according to popularity
- Different documents share facets or stories
- Exchangeability in the context of segmentation
- Specifies the type of permutations of assignments to the random variables that do not affect joint probability under a model.
- Complete or Group Exchangeability
- All permutations of assignments are equiprobable
- Segmentation is arbitrary
- LDA ${ }^{1}$ and Hierarchical Dirichlet processes (HDP) ${ }^{2}$: No Persistence aspect
- Parameters linear in number of documents
- Markov Exchangeability
- All permutations with same transition count b / w states are equiprobable.
- No Order independence though distinction between permutations.
- HDP-HMM and Sticky HDP-HMM ${ }^{3}$: Inference process expensive
- Quadratic number of transition parameters
${ }^{1}$ DM Blei et al, Latent dirichlet allocation, JMLR 2003
${ }^{2}$ Teh et al, Hierarchical Dirichlet Processes, JASA 2006
${ }^{3}$ Fox et al, An HDP-HMM for systems with state persistence, ICML-2008

BEM:Solution

- Block Exchangeability (BE) ${ }^{4}$
- All permutations preserving the same number of self-transitions and number of nonself transitions for each state along with the ending state are equiprobable.
- Amenable to segmentation, Preserves Order Independence.
- Sparser number of transition parameters (linear).
- Scalable Inference
- BE superclass of CE and subclass of ME.
- Core part of BEM

$$
\begin{gathered}
G \sim D P(\delta, H), P_{i}^{*} \sim \operatorname{Beta}(a, b) \quad \text { for } \quad i=1: \infty \\
\pi_{i j}=\left(1-P_{i}^{*}\right) G\left(\phi_{j}\right)+P_{i}^{*} \delta(i, j), Z_{i j} \sim\left(\pi_{\left(Z_{i(j-1)}\right)}\right)
\end{gathered}
$$

- Inference
- Intractable due to coupling of P^{*} and G.
- Decoupled with introduction of Persistence indicator variables C
- $C_{i j}=0 / 1$, continuity of previous state/ new state
- Equivalent generative process with collapsed Gibbs sampling
- Sample $Z_{i j}$ only when $C_{i j}=1$

[^0]
BEM:Experiments

- News Dataset: 150 News transcripts- each having about 18 stories over 5 broad categories-politics, national affairs, international affairs, business and sports.

Model	$f C 1$	$I T$	Perplexity	Avg s
Sticky HDP-HMM	1.0	5.4 sec	3141	$\mathbf{0 . 3}$
BEM1	0.0012	$\mathbf{0 . 0 2} \mathrm{sec}$	3296	0.55
BEM2	0.006	0.05 sec	1988	0.42
BEM3	0.12	0.3 sec	$\mathbf{1 1 0 3}$	0.32

- Laptop reviews: 11000 reviews, each discussing product facets (appearance, weight, connectivity etc)

Model	$f C 1$	$I T$	Perplexity	Avg $_{s}$
Sticky HDP-HMM	1.0	53 sec	414	$\mathbf{0 . 2 7}$
BEM1	0.08	$\mathbf{2 . 1} \mathbf{~ s e c}$	591	0.57
BEM2	0.19	5.2 sec	$\mathbf{2 5 8}$	0.3
BEM3	0.22	6.3 sec	299	0.33

- Topical analysis of dyadic data
- Product review data, movie data and bibliographic data.
- Genres, research and technology areas, product categories are topics in movies, research domain and the product review data.
- Dyadic association
- Movie scripts, product literature, research papers and the corresponding words.
- Consumers, viewers, researchers and the movie scripts, product literature, research papers.
- Sparse relationships between topics and the domain entities
- Topics and documents
- Topics and users
- Existing models
- Probabilistic Author topic model (ATM) ${ }^{5}$
- Estimates three associations of interest to us
- Do not address sparsity
- Collective matrix factorization (CMF) ${ }^{6}$
- Uses coupled sparse bi-factorization approach.
- Factorizes a binary author-document association matrix.
- May not result in accurate estimation of factor matrices
- Do not estimate the strength of author-document associations.

[^1]\[

$$
\begin{array}{r}
1, \arg \min _{\Phi, \Theta, \mathbb{A}} \frac{1}{2}\|D-\Phi \Theta \mathbb{A}\|_{F}^{2}+\lambda_{1} \sum_{j=1}^{n}\left\|(\Theta \mathbb{A})_{j}\right\|_{1}+\lambda_{2} \sum_{j=1}^{m}\left\|\Theta_{j}\right\|_{1}+\lambda_{3} \sum_{j=1}^{t}\left\|\Phi_{j}\right\|_{1} \\
\quad \text { s.t. supp }(\mathbb{A}) \subseteq \operatorname{supp}(A), \Phi \geq 0, \Theta \geq 0, \mathbb{A} \geq 0, \\
2, \arg \min _{\Phi, \Theta, Q, \mathbb{A}} \frac{1}{2}\|D-\Phi Q\|_{F}^{2}+\frac{1}{2}\|Q-\Theta \mathbb{A}\|_{F}^{2}+\lambda_{Q} \sum_{j=1}^{n}\left\|Q_{j}\right\|_{1}+\lambda_{\Theta} \sum_{j=1}^{m}\left\|\Theta_{j}\right\|_{1} \\
+\lambda_{\Phi} \sum_{j=1}^{t}\left\|\Phi_{j}\right\|_{1} \text { s.t.supp }(\mathbb{A}) \subseteq \operatorname{supp}(A), \Phi \geq 0, \Theta \geq 0, Q \geq 0, \mathbb{A} \geq 0, \\
2.1, \text { Solving } \Phi: \quad\left\{\arg \min _{\left(\Phi^{T}\right)_{i} \geq 0} \frac{1}{2}\left\|\left(D^{T}\right)_{i}-Q^{T}\left(\Phi^{T}\right)_{i}\right\|_{F}^{2}+\lambda_{\Phi}\left\|\left(\Phi^{T}\right)_{i}\right\|_{1}\right\}_{i=1: v} \\
\text { 2.2, Solving } \Theta: \quad\left\{\arg \min _{\left(\Theta^{T}\right)_{i} \geq 0} \frac{1}{2}\left\|\left(Q^{T}\right)_{i}-\mathbb{A}^{T}\left(\Theta^{T}\right)_{i}\right\|_{F}^{2}+\lambda_{\Theta}\left\|\left(\Theta^{T}\right)_{i}\right\|_{1}\right\}_{i=1: t}, \\
\text { 2.3, Solving } Q: \quad\left\{\arg \min _{Q_{i} \geq 0} \frac{1}{2} \|[D ; \Theta \mathbb{A}]_{i}-[\Phi ; \text { eye }(t, t)] Q_{i}\left\|_{F}^{2}+\lambda_{Q}\right\| Q_{i} \|_{1}\right\}_{i=1: n} \\
\text { 2.4, Solving } \mathbb{A}: \quad\left\{\arg \min _{\mathbb{A}_{j} \geq 0} \frac{1}{2}\left\|Q_{j}-\Theta \mathbb{A}_{j}\right\|_{F}^{2}, \mathbb{A}_{i j}=0 \forall i \text { s.t. } \mathbb{A}_{i j} \notin \operatorname{supp}(A)\right\}_{j=1: n}
\end{array}
$$
\]

- In SMTF 7, subproblems are solved in an alternating minimization framework using Projected FISTA.
- Proof for convergence for Projected FISTA.
${ }^{7}$ Ranganath B N, Sparse topical analysis of dyadic data using matrix tri-factorization, Machine Learning 2015
- Datasets
- DBLP abstracts dataset (DBLP): We use a subset of 6320 documents involving 3377 authors covering 8 conferences.
- Product Review (REV) dataset: 9651 reviews written by 5675 reviewers in 10 different product categories. This results in 5998 documents, one for each product.
- Sparsity on Q improves TE, DTa-F1, DTa-ARI.
- Sparsity on Q and Θ improves ATa-CCD.

Table: Performance comparison between SMTF, CMF and ATM

	DBLP				REV			
Model	TE	DTa-F1	DTa-ARI	ATa-CCD	TE	DTa-F1	DTa-ARI	ATa-CCD
SMTF $_{1}$	$\mathbf{1 3 1 2 4 0}$	0.33	0.19	$\mathbf{4 2 3}$	$\mathbf{4 3 1 2 9}$	0.53	0.46	$\mathbf{4 5 4}$
SMTF $_{2}$	150870	0.28	0.13	$\mathbf{4 2 3}$	48376	0.51	0.44	508
CMF	154580	0.25	0.01	428	48588	0.16	0.01	884
ATM	-	$\mathbf{0 . 3 5}$	$\mathbf{0 . 2 4}$	518	-	$\mathbf{0 . 6 0}$	$\mathbf{0 . 5 5}$	612

- Entity resolution in Dyadic data
- Identify correct author entity for each of the aliases in all the documents
- Grouping over the documents
- Documents share author entities, topics
- Sparse relationships
- Smaller number of author entities and topics per group.
- Smaller number of aliases for author entities.
- Existing models
- LDA for Entity resolution model (LDA-ER) ${ }^{8}$
- Do not utilize textual information for disambiguation of the identical aliases.
- Do not address sparsity issue.
- Grouped Author topic model (GATM) ${ }^{9}$
- Utilizes textual information.
- Uses HDP nonparametric prior over author entities and topics for the groups.
- Do not address sparsity issue.

[^2]- SERM ${ }^{10}$, structurally similar model as that of GATM
- Third level: Stick breaking prior of DP
- Nonparametric in the number of groups
- Assignment of groups to the documents.
- Second level: Sparsity promoting Indian Buffet process (IBP) priors over author entities and topics for the groups
- Nonparametric IBP over author entities for the groups
- Parametric IBP over topics for the groups leading to scalable solution.
- Assignment of author entities and topics for the aliases and the words in the group.
- Third level
- k-NN mechanism for selecting smaller number of potential author aliases for the author entities leading to scalability
- Noise model as that in LDA-ER, GATM employed for generating the aliases.
- Generate the word from the topic.

[^3]
SERM:Results

- Datasets

- Citeseer: 1785 author references to the 1009 author entities in 877 documents.
- Rexa: 2149 author references, among which 747 are labeled and the remaining are unlabeled. The labeled author references point to the 100 author entities in 488 documents.

Table: Best B-CUBED results for SERM and GATM

	Citeseer		Rexa	
Model	time	F1	time	F1
SERM	$\mathbf{3 . 2}$	$\mathbf{8 6 . 0 6}$	$\mathbf{1 . 3}$	$\mathbf{7 7 . 6 5}$
GATM	21.6	82.21	14	61.49

Questions ?

[^0]: ${ }^{4}$ Adway et al, A Layered Dirichlet Process for Hierarchical Segmentation of Sequential Grouped Data, ECML 2013

[^1]: ${ }^{5} \mathrm{M}$ Rosen-Zvi et al, The author-topic model for authors and documents, UAI 2004
 ${ }^{6}$ M Sachan et al, Collective matrix factorization for co-clustering, WWW 2013

[^2]: ${ }^{8}$ Indrajit Bhattacharya et al, A Latent Dirichlet Model for Unsupervised Entity Resolution, SDM 2006
 ${ }^{9}$ AM Dai et al, The grouped author-topic model for unsupervised entity resolution, ICANN 2011

[^3]: ${ }^{10}$ Ranganath B N, Shalabh Bhatnagar, Scalable Focussed Entity Resolution, IJCNN 2016

