Scalable Sparse Bayesian Nonparametric and Matrix Tri-factorization Models for Text Segmentation, Topical analysis and Entity Resolution in Dyadic data.

Ranganath B.N.¹ and Shalabh Bhatnagar¹

¹Indian Institute of Science, Bangalore, India

April. 28th, 2016

イロト 不得 とくほと くほとう

Overview of the work

- To model sparsity for different applications
 - Text segmentation, topical analysis and entity resolution in dyadic data
 - Traditional approaches do not consider sparsity.
- Sparse relationships between the domain entities and the latent components of the data.

・ロト ・四ト ・ヨト ・ヨト 三日

- Modeling sparse relationships
 - Extracts relevant information.
 - Scalable solution.
- Bayesian Nonparametric and matrix trifactorization approaches

Block Exchangeable model (BEM):Segmentation

- Segmentation of collections of sequence data
 - Laptop review dataset in to facets
 - News dataset in to stories.
- Occurrence of facets or the stories
 - Order independent
 - Persistence according to popularity
 - Different documents share facets or stories
- Exchangeability in the context of segmentation
 - Specifies the type of permutations of assignments to the random variables that do not affect joint probability under a model.
 - Complete or Group Exchangeability
 - All permutations of assignments are equiprobable
 - Segmentation is arbitrary
 - LDA ¹ and Hierarchical Dirichlet processes (HDP) ²: No Persistence aspect
 - Parameters linear in number of documents
 - Markov Exchangeability
 - All permutations with same transition count b/w states are equiprobable.
 - No Order independence though distinction between permutations.
 - HDP-HMM and Sticky HDP-HMM ³: Inference process expensive
 - Quadratic number of transition parameters

¹DM Blei et al, Latent dirichlet allocation, JMLR 2003

²Teh et al, Hierarchical Dirichlet Processes, JASA 2006

³Fox et al, An HDP-HMM for systems with state persistence, ICML 2008

BEM:Solution

- Block Exchangeability (BE) ⁴
 - All permutations preserving the same number of self-transitions and number of nonself transitions for each state along with the ending state are equiprobable.
 - Amenable to segmentation, Preserves Order Independence.
 - Sparser number of transition parameters (linear).
 - Scalable Inference
 - BE superclass of CE and subclass of ME.
- Core part of BEM

$$G \sim DP(\delta, H), P_i^* \sim Beta(a, b) \quad for \quad i = 1 : \infty$$

$$\pi_{ij} = (1 - P_i^*)G(\phi_j) + P_i^*\delta(i, j), Z_{ij} \sim (\pi_{(Z_{i(j-1)})})$$

Inference

- Intractable due to coupling of *P*^{*} and *G*.
- Decoupled with introduction of Persistence indicator variables C
 - $C_{ij} = 0/1$, continuity of previous state/ new state
 - Equivalent generative process with collapsed Gibbs sampling
 - Sample Z_{ij} only when $C_{ij} = 1$

⁴Adway et al, A Layered Dirichlet Process for Hierarchical Segmentation of Sequential Grouped Data, ECML 2013

4/12

BEM:Experiments

 News Dataset: 150 News transcripts- each having about 18 stories over 5 broad categories-politics, national affairs, international affairs, business and sports.

Model	fC1	IT	Perplexity	Avgs
Sticky HDP-HMM	1.0	5.4 sec	3141	0.3
BEM1	0.0012	0.02 sec	3296	0.55
BEM2	0.006	0.05 sec	1988	0.42
BEM3	0.12	0.3 sec	1103	0.32

• Laptop reviews: 11000 reviews, each discussing product facets (appearance, weight, connectivity etc)

Model	fC1	IT	Perplexity	Avgs
Sticky HDP-HMM	1.0	53 sec	414	0.27
BEM1	0.08	2.1 sec	591	0.57
BEM2	0.19	5.2 sec	258	0.3
BEM3	0.22	6.3 sec	299	0.33

Sparse Matrix Tri-factorization (SMTF): Motivation

- Topical analysis of dyadic data
 - Product review data, movie data and bibliographic data.
 - Genres, research and technology areas, product categories are topics in movies, research domain and the product review data.
 - Dyadic association
 - Movie scripts, product literature, research papers and the corresponding words.
 - Consumers, viewers, researchers and the movie scripts, product literature, research papers.
- Sparse relationships between topics and the domain entities
 - Topics and documents
 - · Topics and users
- Existing models
 - Probabilistic Author topic model (ATM) ⁵
 - Estimates three associations of interest to us
 - Do not address sparsity
 - Collective matrix factorization (CMF) ⁶
 - Uses coupled sparse bi-factorization approach.
 - Factorizes a binary author-document association matrix.
 - May not result in accurate estimation of factor matrices
 - Do not estimate the strength of author-document associations.

⁵M Rosen-Zvi et al, The author-topic model for authors and documents, UAI 2004

⁶M Sachan et al, Collective matrix factorization for co-clustering, WWW 2013 🚊 🕓

6/12

SMTF:Formulation

$$\begin{split} 1, \arg\min_{\Phi,\Theta,\mathbb{A}} \frac{1}{2} \|D - \Phi\Theta\mathbb{A}\|_{F}^{2} + \lambda_{1} \sum_{j=1}^{n} \|(\Theta\mathbb{A})_{j}\|_{1} + \lambda_{2} \sum_{j=1}^{m} \|\Theta_{j}\|_{1} + \lambda_{3} \sum_{j=1}^{t} \|\Phi_{j}\|_{1} \\ \text{ s.t. } supp(\mathbb{A}) \subseteq supp(\mathbb{A}), \Phi \ge 0, \Theta \ge 0, \mathbb{A} \ge 0, \\ 2, \arg\min_{\Phi,\Theta,Q,\mathbb{A}} \frac{1}{2} \|D - \PhiQ\|_{F}^{2} + \frac{1}{2} \|Q - \Theta\mathbb{A}\|_{F}^{2} + \lambda_{Q} \sum_{j=1}^{n} \|Q_{j}\|_{1} + \lambda_{\Theta} \sum_{j=1}^{m} \|\Theta_{j}\|_{1} \\ + \lambda_{\Phi} \sum_{j=1}^{t} \|\Phi_{j}\|_{1} s.t.supp(\mathbb{A}) \subseteq supp(\mathbb{A}), \ \Phi \ge 0, \Theta \ge 0, Q \ge 0, \mathbb{A} \ge 0, \\ 2.1, Solving \ \Phi : \quad \{\arg\min_{(\Phi^{T})_{i}\ge 0} \frac{1}{2} \|(D^{T})_{i} - Q^{T}(\Phi^{T})_{i}\|_{F}^{2} + \lambda_{\Phi} \|(\Phi^{T})_{i}\|_{1}^{3}\}_{i=1:v} \\ 2.2, Solving \ \Theta : \quad \{\arg\min_{(\Theta^{T})_{i}\ge 0} \frac{1}{2} \|(Q^{T})_{i} - \mathbb{A}^{T}(\Theta^{T})_{i}\|_{F}^{2} + \lambda_{\Theta} \|(\Theta^{T})_{i}\|_{1}^{3}\}_{i=1:t}, \\ 2.3, Solving \ Q : \quad \{\arg\min_{Q_{i}\ge 0} \frac{1}{2} \|[D; \Theta\mathbb{A}]_{i} - [\Phi; eye(t, t)]Q_{i}\|_{F}^{2} + \lambda_{Q} \|Q_{i}\|_{1}^{3}\}_{i=1:n} \\ 2.4, Solving \ \mathbb{A} : \quad \{\arg\min_{A_{j}\ge 0} \frac{1}{2} \|Q_{j} - \Theta\mathbb{A}_{j}\|_{F}^{2}, \mathbb{A}_{ij} = 0 \ \forall i \text{ s.t. } \mathbb{A}_{ij} \notin supp(\mathbb{A})\}_{j=1:n} \end{split}$$

In SMTF ⁷, subproblems are solved in an alternating minimization framework using Projected FISTA.
Proof for convergence for Projected FISTA.

⁷Ranganath B N, Sparse topical analysis of dyadic data using matrix tri-factorization, Machine Learning 2015

Datasets

- DBLP abstracts dataset (DBLP): We use a subset of 6320 documents involving 3377 authors covering 8 conferences.
- Product Review (REV) dataset: 9651 reviews written by 5675 reviewers in 10 different product categories. This results in 5998 documents, one for each product.
- Sparsity on *Q* improves TE, DTa-F1, DTa-ARI.
- Sparsity on Q and Θ improves ATa-CCD.

Table: Performance comparison between SMTF, CMF and ATM

	DBLP			REV				
Model	TE	DTa-F1	DTa-ARI	ATa-CCD	TE	DTa-F1	DTa-ARI	ATa-CCD
SMTF ₁	131240	0.33	0.19	423	43129	0.53	0.46	454
SMTF ₂	150870	0.28	0.13	423	48376	0.51	0.44	508
CMF	154580	0.25	0.01	428	48588	0.16	0.01	884
ATM	-	0.35	0.24	518	-	0.60	0.55	612

Sparse Entity Resolution Model (SERM): Motivation

• Entity resolution in Dyadic data

- Identify correct author entity for each of the aliases in all the documents
- Grouping over the documents
 - Documents share author entities, topics
- Sparse relationships
 - Smaller number of author entities and topics per group.
 - Smaller number of aliases for author entities.
- Existing models
 - LDA for Entity resolution model (LDA-ER) ⁸
 - Do not utilize textual information for disambiguation of the identical aliases.
 - Do not address sparsity issue.
 - Grouped Author topic model (GATM) ⁹
 - Utilizes textual information.
 - Uses HDP nonparametric prior over author entities and topics for the groups.
 - Do not address sparsity issue.

⁸Indrajit Bhattacharya et al, A Latent Dirichlet Model for Unsupervised Entity Resolution, SDM 2006

⁹AM Dai et al, The grouped author-topic model for unsupervised entity resolution, ICANN 2011

SERM:Model

- SERM ¹⁰, structurally similar model as that of GATM
- Third level: Stick breaking prior of DP
 - Nonparametric in the number of groups
 - Assignment of groups to the documents.
- Second level: Sparsity promoting Indian Buffet process (IBP) priors over author entities and topics for the groups
 - Nonparametric IBP over author entities for the groups
 - Parametric IBP over topics for the groups leading to scalable solution.
 - Assignment of author entities and topics for the aliases and the words in the group.
- Third level
 - k-NN mechanism for selecting smaller number of potential author aliases for the author entities leading to scalability
 - Noise model as that in LDA-ER, GATM employed for generating the aliases.
 - Generate the word from the topic.

¹⁰Ranganath B N, Shalabh Bhatnagar, Scalable Focussed Entity Resolution, IJCNN 2016

Datasets

- Citeseer: 1785 author references to the 1009 author entities in 877 documents.
- Rexa: 2149 author references, among which 747 are labeled and the remaining are unlabeled. The labeled author references point to the 100 author entities in 488 documents.

Table: Best B-CUBED results for SERM and GATM

	Cit	eseer	Rexa		
Model	time	F1	time	F1	
SERM	3.2	86.06	1.3	77.65	
GATM	21.6	82.21	14	61.49	

Questions ?