Discovering variable length phrases from symbolic notation of Carnatic music

Ranjani H. G.
Advisor: Prof. T. V. Sreenivas, Dept of ECE,
Indian Institute of Science

April 26, 2016

Problem Formulation

- Given symbolic transcript, discover variable length phrases for a rāga

Sample symbol transcript of Begada rāga

Problem Formulation

■ Given symbolic transcript, discover variable length phrases for a rāga

Sample symbol transcript of Begada rāga

- Multiple phrases exist - unknown

■ Variable number of notes

Multigram

- Let transcript be denoted by $\underline{A}=\left[A_{1}, A_{2}, \ldots A_{l}\right]$; sequence of rhythm cycles

Multigram

- Let transcript be denoted by $\underline{A}=\left[A_{1}, A_{2}, \ldots A_{I}\right]$; sequence of rhythm cycles
■ Consider any rhythm cycle $A=\left[u_{1}, u_{2}, u_{3}, \ldots, u_{T_{A}}\right]$; where $u_{t} \in V$, with $V=\{S, R, G, M, P, D, N\}$.

$$
\begin{equation*}
p(A)=\prod_{k=1}^{Q_{A}} p\left(s_{k}\right) \triangleq \prod_{k=1}^{Q_{A}} \theta_{k} \tag{1}
\end{equation*}
$$

Multigram

■ Let transcript be denoted by $\underline{A}=\left[A_{1}, A_{2}, \ldots, A_{l}\right]$; sequence of rhythm cycles

- Consider any rhythm cycle $A=\left[u_{1}, u_{2}, u_{3}, \ldots, u_{T_{A}}\right]$; where $u_{t} \in V$, with $V=\{S, R, G, M, P, D, N\}$.

$$
\begin{equation*}
p(A)=\prod_{k=1}^{Q_{A}} p\left(s_{k}\right) \triangleq \prod_{k=1}^{Q_{A}} \theta_{k} \tag{1}
\end{equation*}
$$

- Segmentation on A results in

DPMMGRSSRNDDPPSSSSNSGRGGMMMMGRGM\|

$$
A \equiv\left[s_{1}, s_{2}, s_{3}, \ldots s_{Q_{A}}\right] .
$$

Multigram

■ Let transcript be denoted by $\underline{A}=\left[A_{1}, A_{2}, \ldots, A_{l}\right]$; sequence of rhythm cycles

- Consider any rhythm cycle $A=\left[u_{1}, u_{2}, u_{3}, \ldots, u_{T_{A}}\right]$; where $u_{t} \in V$, with $V=\{S, R, G, M, P, D, N\}$.

$$
\begin{equation*}
p(A)=\prod_{k=1}^{Q_{A}} p\left(s_{k}\right) \triangleq \prod_{k=1}^{Q_{A}} \theta_{k} \tag{1}
\end{equation*}
$$

- Segmentation on A results in

DPMMGRSSRNDDPPSSSSNSGRGGMMMMGRGM\|

$$
A \equiv\left[s_{1}, s_{2}, s_{3}, \ldots s_{Q_{A}}\right] .
$$

■ Set of boundaries $\left\{b_{k}\right\}$ represented by r.v. Z

Parameter estimation: Segmental K-means

- Estimate parameters, θ_{k} to maximize posterior $p(Z \mid A ; \theta)$

$$
\theta^{*}=\arg \max _{\theta}\left\{\max _{\underline{\underline{L}}}\left[\log p\left(\underline{Z} \mid \underline{A} ; \theta^{\text {old }}\right)\right]\right\}
$$

Parameter estimation: Segmental K-means

- Estimate parameters, θ_{k} to maximize posterior $p(Z \mid A ; \theta)$

$$
\theta^{*}=\arg \max _{\theta}\left\{\max _{\underline{\underline{ }}}\left[\log p\left(\underline{Z} \mid \underline{A} ; \theta^{\text {old }}\right)\right]\right\}
$$

- Constraint : $\sum_{k=1}^{Y} \theta_{k}=1$ where, Y is total number of unique sub-sequence entries

Parameter estimation: Segmental K-means

- Estimate parameters, θ_{k} to maximize posterior $p(Z \mid A ; \theta)$

$$
\theta^{*}=\arg \max _{\theta}\left\{\max _{\underline{\underline{ }}}\left[\log p\left(\underline{Z} \mid \underline{A} ; \theta^{\text {old }}\right)\right]\right\}
$$

- Constraint : $\sum_{k=1}^{Y} \theta_{k}=1$ where, Y is total number of unique sub-sequence entries
- Algorithm
- 1. Find Z^{*} such that

$$
\begin{align*}
Z^{*} & =\arg \max _{Z \in \mathcal{Z}} \log p\left(A, Z ; \theta^{\text {old }}\right) \tag{2}\\
& =\arg \max _{Z \in \mathcal{Z}} \log p\left(A \mid Z, \theta^{\text {old }}\right) p\left(Z ; \theta^{\text {old }}\right)
\end{align*}
$$

Parameter estimation: Segmental K-means

- Estimate parameters, θ_{k} to maximize posterior $p(Z \mid A ; \theta)$

$$
\theta^{*}=\arg \max _{\theta}\left\{\max _{\underline{\underline{ }}}\left[\log p\left(\underline{Z} \mid \underline{A} ; \theta^{\text {old }}\right)\right]\right\}
$$

- Constraint : $\sum_{k=1}^{Y} \theta_{k}=1$ where, Y is total number of unique sub-sequence entries
- Algorithm
- 1. Find Z^{*} such that

$$
\begin{align*}
Z^{*} & =\arg \max _{Z \in \mathcal{Z}} \log p\left(A, Z ; \theta^{\text {old }}\right) \tag{2}\\
& =\arg \max _{Z \in \mathcal{Z}} \log p\left(A \mid Z, \theta^{\text {old }}\right) p\left(Z ; \theta^{\text {old }}\right)
\end{align*}
$$

- 2. Update parameters

$$
\begin{equation*}
\theta_{j}^{n e \omega}=\frac{c_{j}^{Z^{*}}}{c^{Z^{*}}} \tag{3}
\end{equation*}
$$

where Z^{*} maximizes posterior

Multigram attributes

- Convergence criteria: Boundaries do not change
- $\{\theta\}$ - Variable length multinomial distribution
- Normalized count over number of segments
- Phrase entries themselves can change across iterations
- Total number of phrases can change across iterations

Analysis

Rough pitch contours of more than 100 rhythm cycles from symbolic transcripts of rāga Begada (in blue)

Analysis

Rough pitch contours of more than 100 rhythm cycles from symbolic transcripts of rāga Begada (in blue) and top ten frequently occurring phrases (sorted aided by other colors) as discovered by 8 -multigram. Two musicological phrase(s) are highlighted using (black and red) arrowheads.

Modified multigram

- Sub-sequences limited by N

Modified multigram

- Sub-sequences limited by N
- Propose a modified 2-stage approach:

■ Obtain phrase set ($\leq N$ length phrases), using multi-gram model

- Create new vocab:

$$
V^{\prime}=\left\{V \cup\left\{s_{i}:\left|s_{i}\right|=N, \theta_{i}>P_{t h r}\right\}, \forall i \in \mathcal{D}_{N-m u l t i}^{r}\right\}
$$

- Replace any occurrence of s_{i} with its corresponding entry from V^{\prime}
- Obtain new set of phrases of maximum $N+M$ length phrases

Analysis

Rough pitch contours of more than 100 rhythm cycles from training data of rāga Begada (in blue) and top ten frequently occurring phrases (sorted aided by other colors) as discovered by modified M-multigram with $(N, M)=(8,8)$. Two characteristic phrase(s) are highlighted using (black and red) arrowheads.

■ Conclusions
■ Use only 7 notes (irrespective of pitch position)

- Discover variable length phrases
- Possible representative feature for symbolic music
- Some discovered phrases also correlate with musicological phrases
- Capture grammatical structure of music

■ Conclusions
■ Use only 7 notes (irrespective of pitch position)

- Discover variable length phrases
- Possible representative feature for symbolic music
- Some discovered phrases also correlate with musicological phrases
- Capture grammatical structure of music

QUESTIONS？

Performance: Perplexity

N-gram								
Raga	Training				Testing			
	$N=5$	$N=6$	$N=7$	$N=8$	$N=5$	$N=6$	$N=7$	$N=8$
Bh	2.80	279	2.81	2.93	17.55	33.5	61.45	90.25
Nt	3.07	3.08	2.83	2.81	8.4	26.7	90.2	152.65
Pa	2.97	273	2.72	2.94	7.62	10.34	9.17	5.77
Sb	2.77	255	2.50	2.45	11.57	25.6	51.6	70.55
Th	2.76	243	2.25	2.19	8.48	16.36	27.02	34.35
Hk	2.47	2.29	2.29	2.22	9.7	29.08	62.61	60.49
Mv	2.93	268	2.77	3.06	7.2	10.69	10.25	7.55
Kh	2.53	2.32	2.19	2.15	6.19	10.61	12.23	11.46
Bg	2.63	250	2.45	2.35	59.64	236.08	186.75	85.97
K1	2.97	2.96	3.17	2.10	156.31	770.04	1667	1946.5
Sh	2.30	2.12	2.02	1.98	30.7	212.28	1163	2324
Rg	2.67	2.51	2.44	2.49	31.95	239.13	1136	1777

N-multigram model								
	Training				Testing			
Raga	$N=5$	$N=6$	$N=7$	$N=8$	$N=5$	$N=6$	$N=7$	$N=8$
Bh	1.91	1.72	1.56	1.43	2.65	2.66	2.67	2.63
Nt	1.93	1.73	1.55	1.43	2.18	2.27	2.29	2.33
Pa	1.98	1.77	1.62	1.48	2.82	2.92	2.99	3.02
Sb	1.90	1.72	1.52	1.36	2.50	2.52	2.61	2.55
Th	1.92	1.77	1.54	1.41	2.50	244	2.53	2.55
Hk	1.82	1.59	1.40	1.31	2.47	2.47	2.56	2.62
Mv	1.86	1.65	1.48	1.33	2.16	2.18	2.25	2.24
Kh	1.83	1.67	1.44	1.33	2.50	2.59	2.62	2.76
Bg	1.84	1.57	1.50	1.30	2.68	2.86	2.99	3.01
K1	1.87	1.65	1.51	1.41	2.81	2.96	3.17	3.24
Sh	1.74	1.59	1.42	1.33	2.50	245	2.58	2.64
Rg	1.83	1.70	1.49	1.41	2.46	2.54	2.73	2.78

Perplexity values of N -gram, N -multigram on training and testing symbolic music data for the rāgas considered.

Performance: Perplexity

N-multigram model								
	Training				Testing			
Raga	$N=5$	$N=6$	$N=7$	$N=8$	$N=5$	$N=6$	$N=7$	$N=8$
Bh	1.91	1.72	1.56	1.43	2.65	2.66	2.67	2.63
Nt	1.93	1.73	1.55	1.43	2.18	2.27	2.29	2.33
Pa	1.98	1.77	1.62	1.48	2.82	2.92	2.99	3.02
Sb	1.90	1.72	1.52	1.36	2.50	2.52	2.61	2.55
Th	1.92	1.77	1.54	1.41	2.50	2.44	2.53	2.55
Hk	1.82	1.59	1.40	1.31	2.47	2.47	2.56	2.62
Mv	1.86	1.65	1.48	1.33	2.16	2.18	2.25	2.24
Kh	1.83	1.67	1.44	1.33	2.50	2.59	2.62	2.76
Bg	1.84	1.57	1.50	1.30	2.68	2.86	2.99	3.01
K1	1.87	1.65	1.51	1.41	2.81	2.96	3.17	3.24
Sh	1.74	1.59	1.42	1.33	2.50	2.45	2.58	2.64
Rg	1.83	1.70	1.49	1.41	2.46	2.54	2.73	2.78

Modified N^{\prime}-multigram model								
	Training				Testing			
Raga	$N=5$ $N^{\prime}=5$	$N=6$ $N^{\prime}=6$	$\left.\begin{array}{\|l\|} \hline N=7 \\ N^{\prime}=7 \end{array} \right\rvert\,$	$\begin{array}{\|l\|} \hline N=8 \\ N^{\prime}=8 \end{array}$	$\begin{aligned} & \hline N=5 \\ & N^{\prime}=5 \end{aligned}$	$\begin{aligned} & N=6 \\ & N^{\prime}=6 \end{aligned}$	$\begin{array}{\|l\|} \hline N=7 \\ N^{\prime}=7 \end{array}$	$\begin{array}{\|c\|} \hline N=8 \\ N^{\prime}=8 \end{array}$
Bh	1.62	1.55	1.53	1.63	2.86	2.75	269	2.65
Nt	1.55	1.62	1.62	1.64	264	2.36	235	2.36
Pa	1.76	1.64	1.59	1.61	293	2.97	299	3.02
Sb	1.50	1.41	1.43	1.34	286	2.76	263	2.59
Th	1.39	1.30	1.31	1.29	2.85	2.61	2.58	2.55
Hk	1.32	1.30	1.34	1.26	272	2.52	2.59	2.62
Mv	1.69	1.69	1.66	1.57	2.37	2.19	2.25	2.27
Kh	1.49	1.38	1.41	1.33	2.82	2.70	263	2.77
Bg	1.52	1.56	1.56	1.48	275	2.86	2.99	3.01
K1	1.70	1.66	1.74	1.73	3.01	3.05	3.19	3.24
Sh	1.31	1.20	1.22	1.20	2.92	2.75	263	2.67
Rg	1.49	1.47	1.42	1.46	276	2.72	275	2.79

Perplexity values of N-multigram, (N, M) modified multigram on training and testing symbolic music data for the rāgas considered.

Performance: Correlation with musicological phrases

	Rāga (short form)	Phrases (Some accepted)
1.	Begada	
2.	Reethigowla	\{GMNDM\}, \{GMPMGRS\}, \{GMNNS\}44, \{NSGRS $\},\left\{\right.$ NSGGMM ${ }^{44},\{$ NPNNS $\},\{N N S\}$ $\{$ SNDMPDMGRS $\},\{\text { NDM }\}^{44},\{\text { SGRGGM }\}^{4}$
3.	Shahana	\{PMDNSS \}. \{NDPDPM \}, \{NSRGGRR\} ${ }^{4}$, \{RGMPPP \} ${ }^{4}$, \{RSNSDPMDD $\},\{$ MPDPMM $\}$, \{NSD\}, \{GMR\}, \{PMD\} ${ }^{4}$. \{MGMRGRS $\}$
4.	Khamas	```{SMGM} 4, {GMNDNP}, {NDPMGMM}, {DNSNSS}, {NDPMPP}, {DNSS} 4, {SMMGRS}4, {MGM} & & {MGMNDD} *```
	Raga (short form)	Phrases (Common)
1.	Bhairavi	$\begin{aligned} & \text { \{SGRGM\}, }\{\text { GRGMPDP }\} 屯 4,\{\text { PMNNDP }\}, \\ & \text { \{MPMNDP }\},\{\text { SSRNDN }\},\{\text { MMPDP }\}, \\ & \text { \{SNRSGRN }\} 4 \end{aligned}$
2.	Nattai	$\begin{aligned} & \{\text { MGMPP }\} 4,\{\text { MGPMGMR }\}^{44},\{\text { SNSRRS }\}, \\ & \{\text { SNPMPNSSG }\},\{\text { SNRRSNPMG }\},\{G M P N S N P M G\} \end{aligned}$
3.	Panthuvarali	\{NSRSSN ${ }^{44}$, \{PMGGRSRG\}, \{GMDPPM ${ }^{44}$, \{DND $\},\{$ NDPMGRGG $\},\{G M D N\}{ }^{4},\{$ RGRS $\}$
4.	Shankarabharana	\{RGMPMG\}, \{SRGSSN\}. \{MGMPDDP\}, \{SRGMPPMGGG\}, \{SDDNPPGMM \}
5.	Thodi	
6.	Hari-Kambhoji	\{RGMG\}, \{RPMGRGRSSS \}, \{RGMPPPDNDP\}, \{MGRGRSS \}, \{SNDP \}
7.	Madhyamavathi	\{PMRMRS ${ }^{44}$. $\{\text { RMP }\}^{4}$. \{MRPMRMRRRS $\}$. \{SMRPMNP\}, \{MPNN\}, \{MRS\} 44, \{PRSRRR\}
8.	Kalyani	\{RGMPD $\},\{\text { PMGGRS }\}^{44},\{\text { PMGDP }\}^{4}$, \{MGRGRSR\}. \{RNNDP\}

Phrases as marked by musicians. Those found by N -multigram marked by black left arrowhead, phrases found by 2-stage (N, M) multigram marked by red left arrowhead. $=$

Performance: Total size of phrases discovered

A comparison of phrase set sizes for the considered rāgas obtained using multigram and the 2-stage multigram models for N and M ranging from 5 to 8 .

