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Preliminaries
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A set of terminalsM = {1, 2, . . . ,m} wants to generate a group secret
key.

Each terminal has a component of a discrete memoryless multiple source,
X n
i , ∀1 ≤ i ≤ m.
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Interactive communication is allowed among the terminals.

F = {F1, F2, · · · , Fr} is the interactive communication taking values in
F .
Here Fj sent by some terminal i is a function of X n

i and all the previous
communication.

Communication rate = 1
n

log |F|.
After the communication the terminals compute a group secret key (SK)
K(n)=K(n)(X n

M).

4 / 12



The Multiterminal Source Model
Lower Bound on RSK
RSK-maximal Sources

Preliminaries

X
n
3

X
n
5

X
n
2

X
n
4

F1

F3

F5
F6

F2

F4

K

K

K

K

X
n
6K

Channel

K

Noiseless
X

n
1

Interactive communication is allowed among the terminals.

F = {F1, F2, · · · , Fr} is the interactive communication taking values in
F .
Here Fj sent by some terminal i is a function of X n

i and all the previous
communication.

Communication rate = 1
n

log |F|.
After the communication the terminals compute a group secret key (SK)
K(n)=K(n)(X n

M).

4 / 12



The Multiterminal Source Model
Lower Bound on RSK
RSK-maximal Sources

Preliminaries(contd.)

The secret key K(n) satisfies the following property:
for any ε > 0 and for all sufficiently large n,

∃ some function g
(n)
i (X n

i , F) such that

Pr(K(n) 6= g
(n)
i (X n

i , F)) ≤ ε, ∀1 ≤ i ≤ m. (Recoverability)

I (K(n); F) ≤ ε (Strong secrecy)

log |K(n)| − H(K(n)) ≤ ε, where K(n) is the range of K(n). (Uniformity)

If 1
n
H(K(n))→ R as n →∞ , then R is an achievable secret key rate.

Secret key capacity C(M) = supR.
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Evaluating SK Capacity

C(M) = H(XM)−min(R1,R2,...,Rm)∈RCO

∑m

i=1 Ri .
[Csiszár & Narayan, 2004]

Here

RCO =

{
(R1,R2, ...,Rm) :Ri ≥ 0, ∀1 ≤ i ≤ m,

∑
j∈B

Rj ≥ H(XB |XBc ), ∀B (M,B 6= φ

}
is the achievable communication rate region for all terminals to recover
X n
M.

RCO = min(R1,R2,...,Rm)∈RCO

∑m
i=1 Ri is called the

minimum rate of communication for omniscience.
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Evaluating SK Capacity

C(M) = minP ∆(P). [Chan & Zheng, 2010]

∆(P) = 1
`−1

[
H(XA1

) + H(XA2
) + · · ·+ H(XA`

)− H(XM)

]
.

Here P = {A1,A2, . . . ,A`}, ` ≥ 2, is a partition of M and
XA = (Xi : i ∈ A).

The quantity minP ∆(P) is called multipartite information.

Observe for the case of m = 2 the quantity minP ∆(P) equals I (X1;X2).

There exists a unique finest partition P∗ of M which minimizes ∆(P).

We shall refer to P∗ as the fundamental partition.
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Communication Complexity

RSK = Communication complexity,
is the minimum rate of communication required to achieve SK capacity.

RSK ≤ RCO. [Csiszár & Narayan, 2004]

If RSK = RCO, we call the source RSK-maximal.
These are thus the worst-case sources in terms of communication rates.

Can we compute RSK?
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Lower Bound on Communication Complexity

Theorem (Mukherjee & Kashyap, ’16)

RSK ≥ CI(XM)− I(XM).

The result is an extension of Tyagi’s earlier work for two terminals, i.e.,
m = 2.

CI(XM) is the minimum rate of interactive common information.

Fact: H(XM) ≥ CI(XM) ≥ I(XM)

and hence the lower bound is non-negative.

CI(XM) is difficult to compute in general.

Exact computation of CI(XM) is possible for the special case of the
hypergraphical source.
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Evaluating CI(XM): The Hypergraphical Source

Consider a hypergraph H = (V, E).

V =M.

Associate with each hyperedge e ∈ E an i.i.d. sequence of n Bernoulli
(1/2) random variables ξne .

Random variables associated with distinct hyperedges in E are
independent.

Define a multiterminal source as follows:
X n
i = (ξne : e ∈ E such that i ∈ e).

The multiterminal source X n
M is known as the hypergraphical source.

Theorem

For a hypergraphical source we have CI(XM) = |EP∗ |, where EP∗ is the set of
hyperedges intersecting with at least two parts of P∗.
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The Lower Bound is Loose
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Consider the following hypergraphical model.

m = 4 and E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}.

The random variables (ξe)e∈E are Bernoulli (1/2) random variables.

P∗ = {{1, 2, 3}, {4}} and I(XM) = 1.

Therefore, CI(XM) = 1 and hence, CI(XM)− I(XM) = 0.

However, RSK > 0 as (X1,X2) is independent of X4.
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When is a Source RSK-maximal?

Theorem

A multiterminal source XM with fundamental partition P∗ is RSK-maximal if
for all A ∈ P∗ we have H(XA|XAc ) = 0.

Theorem

A hypergraphical source H = (M, E) is RSK-maximal iff E = EP∗ .

Example: Hypergraphical source defined on the complete t-uniform
hypergraph Km,t :

V =M.
E is the set of all t-subsets ofM.
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