

On the Communication Complexity for SK Generation in the Multiterminal Source Model

Manuj Mukherjee Navin Kashyap

Chung Chan Qiaoqiao Zhou Yogesh Sankarasubramaniam

Indian Institute of Science, Bangalore

EECS Divisional Symposium

Outline

2 Lower Bound on R_{SK}

Preliminaries

- A set of terminals $\mathcal{M} = \{1, 2, \dots, m\}$ wants to generate a group secret key.
- Each terminal has a component of a discrete memoryless multiple source, X_i^n , $\forall 1 \le i \le m$.

The Multiterminal Source Model Lower Bound on R_{SK} R_{SK}-maximal Sources

Preliminaries

- Interactive communication is allowed among the terminals.
- $\mathbf{F} = \{F_1, F_2, \cdots, F_r\}$ is the *interactive communication* taking values in \mathcal{F} .

Here F_j sent by some terminal i is a function of X_i^n and all the previous communication.

• Communication rate = $\frac{1}{n} \log |\mathcal{F}|$.

• After the communication the terminals compute a group secret key (SK) $\mathbf{K}^{(n)} = \mathbf{K}^{(n)}(X_{\mathcal{M}}^{n}).$

The Multiterminal Source Model Lower Bound on R_{SK} R_{SK}-maximal Sources

Preliminaries

- Interactive communication is allowed among the terminals.
- $\mathbf{F} = \{F_1, F_2, \cdots, F_r\}$ is the *interactive communication* taking values in \mathcal{F} .

Here F_j sent by some terminal i is a function of X_i^n and all the previous communication.

- Communication rate = $\frac{1}{n} \log |\mathcal{F}|$.
- After the communication the terminals compute a group secret key (SK) $\mathbf{K}^{(n)} = \mathbf{K}^{(n)}(X_{\mathcal{M}}^{n}).$

Preliminaries(contd.)

- The secret key $K^{(n)}$ satisfies the following property: for any $\epsilon > 0$ and for all sufficiently large n,
 - \exists some function $g_i^{(n)}(X_i^n, \mathsf{F})$ such that $\Pr(\mathsf{K}^{(n)} \neq g_i^{(n)}(X_i^n, \mathsf{F})) \leq \epsilon, \forall 1 \leq i \leq m.$ (*Recoverability*)
 - $I(K^{(n)}; F) \leq \epsilon$ (Strong secrecy)
 - $log|\mathcal{K}^{(n)}| H(\mathsf{K}^{(n)}) \leq \epsilon$, where $\mathcal{K}^{(n)}$ is the range of $\mathsf{K}^{(n)}$. (Uniformity)
- If $\frac{1}{n}H(\mathsf{K}^{(n)}) \to R$ as $n \to \infty$, then R is an achievable secret key rate. • Secret key capacity $\mathcal{C}(\mathcal{M}) = \sup R$.

Preliminaries(contd.)

- The secret key $K^{(n)}$ satisfies the following property: for any $\epsilon > 0$ and for all sufficiently large n,
 - \exists some function $g_i^{(n)}(X_i^n, \mathbf{F})$ such that $\Pr(\mathsf{K}^{(n)} \neq g_i^{(n)}(X_i^n, \mathbf{F})) \leq \epsilon, \forall 1 \leq i \leq m.$ (*Recoverability*)
 - $I(K^{(n)}; F) \leq \epsilon$ (Strong secrecy)
 - $log|\mathcal{K}^{(n)}| H(\mathsf{K}^{(n)}) \leq \epsilon$, where $\mathcal{K}^{(n)}$ is the range of $\mathsf{K}^{(n)}$. (Uniformity)
- If $\frac{1}{n}H(\mathsf{K}^{(n)}) \to R$ as $n \to \infty$, then R is an achievable secret key rate.
- Secret key capacity $C(\mathcal{M}) = \sup R$.

Evaluating SK Capacity

•
$$C(\mathcal{M}) = H(X_{\mathcal{M}}) - \min_{(R_1, R_2, \dots, R_m) \in \mathcal{R}_{CO}} \sum_{i=1}^m R_i$$
.
[Csiszár & Narayan, 2004]

Here

$$\mathcal{R}_{CO} = \left\{ (R_1, R_2, ..., R_m) : R_i \ge 0, \forall 1 \le i \le m, \\ \sum_{j \in B} R_j \ge H(X_B | X_{B^c}), \forall B \subsetneq \mathcal{M}, B \neq \phi \right\}$$

is the achievable communication rate region for all terminals to recover $X^{n}_{\mathcal{M}}.$

*R*_{CO} = min_{(R1,R2},...,*R_m*)∈*R*_{CO} ∑^m_{i=1} *R_i* is called the minimum rate of communication for omniscience.

Evaluating SK Capacity

• $\mathcal{C}(\mathcal{M}) = \min_{\mathcal{P}} \Delta(\mathcal{P})$. [Chan & Zheng, 2010]

•
$$\Delta(\mathcal{P}) = \frac{1}{\ell-1} \left[H(X_{A_1}) + H(X_{A_2}) + \cdots + H(X_{A_\ell}) - H(X_{\mathcal{M}}) \right].$$

- Here $\mathcal{P} = \{A_1, A_2, \dots, A_\ell\}, \ \ell \geq 2$, is a partition of \mathcal{M} and $X_A = (X_i : i \in A)$.
- The quantity min_P Δ(P) is called multipartite information.
 Observe for the case of m = 2 the quantity min_P Δ(P) equals I(X₁; X₂).
- There exists a unique finest partition P* of M which minimizes Δ(P).
 We shall refer to P* as the fundamental partition.

Communication Complexity

• R_{SK} = Communication complexity,

is the minimum rate of communication required to achieve SK capacity.

- $\mathbf{R}_{\rm SK} \leq \mathbf{R}_{\rm CO}$. [Csiszár & Narayan, 2004]
- If $R_{SK} = R_{CO}$, we call the source R_{SK} -maximal. These are thus the worst-case sources in terms of communication rates.
- Can we compute **R**_{SK}?

Communication Complexity

• R_{SK} = Communication complexity,

is the minimum rate of communication required to achieve SK capacity.

- $\mathbf{R}_{\rm SK} \leq \mathbf{R}_{\rm CO}$. [Csiszár & Narayan, 2004]
- If $R_{SK} = R_{CO}$, we call the source R_{SK} -maximal. These are thus the worst-case sources in terms of communication rates.
- Can we compute **R**_{SK}?

Lower Bound on Communication Complexity

Theorem (Mukherjee & Kashyap, '16)

 $R_{SK} \geq Cl(X_{\mathcal{M}}) - I(X_{\mathcal{M}}).$

- The result is an extension of Tyagi's earlier work for two terminals, i.e., m = 2.
- $Cl(X_M)$ is the minimum rate of interactive common information.
- Fact: $H(X_{\mathcal{M}}) \geq CI(X_{\mathcal{M}}) \geq I(X_{\mathcal{M}})$

and hence the lower bound is non-negative.

• $CI(X_{\mathcal{M}})$ is difficult to compute in general.

Exact computation of $CI(X_M)$ is possible for the special case of the hypergraphical source.

Lower Bound on Communication Complexity

Theorem (Mukherjee & Kashyap, '16)

 $R_{SK} \geq Cl(X_{\mathcal{M}}) - I(X_{\mathcal{M}}).$

- The result is an extension of Tyagi's earlier work for two terminals, i.e., m = 2.
- $Cl(X_{\mathcal{M}})$ is the minimum rate of interactive common information.
- Fact: $H(X_{\mathcal{M}}) \geq Cl(X_{\mathcal{M}}) \geq l(X_{\mathcal{M}})$

and hence the lower bound is non-negative.

• $CI(X_{\mathcal{M}})$ is difficult to compute in general.

Exact computation of $Cl(X_M)$ is possible for the special case of the hypergraphical source.

Lower Bound on Communication Complexity

Theorem (Mukherjee & Kashyap, '16)

 $R_{SK} \geq Cl(X_{\mathcal{M}}) - I(X_{\mathcal{M}}).$

- The result is an extension of Tyagi's earlier work for two terminals, i.e., m = 2.
- $Cl(X_{\mathcal{M}})$ is the minimum rate of interactive common information.
- Fact: $H(X_{\mathcal{M}}) \geq Cl(X_{\mathcal{M}}) \geq l(X_{\mathcal{M}})$

and hence the lower bound is non-negative.

• $CI(X_{\mathcal{M}})$ is difficult to compute in general.

Exact computation of $CI(X_M)$ is possible for the special case of the hypergraphical source.

Evaluating $CI(X_{\mathcal{M}})$: The Hypergraphical Source

- Consider a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$.
- $\mathcal{V} = \mathcal{M}$.
- Associate with each hyperedge $e \in \mathcal{E}$ an i.i.d. sequence of *n* Bernoulli (1/2) random variables ξ_e^n .
- \bullet Random variables associated with distinct hyperedges in $\boldsymbol{\mathcal{E}}$ are independent.
- Define a multiterminal source as follows: $X_i^n = (\xi_e^n : e \in \mathcal{E} \text{ such that } i \in e).$
- The multiterminal source $X_{\mathcal{M}}^n$ is known as the hypergraphical source.

Theorem

For a hypergraphical source we have $Cl(X_{\mathcal{M}}) = |\mathcal{E}_{\mathcal{P}^*}|$, where $\mathcal{E}_{\mathcal{P}^*}$ is the set of hyperedges intersecting with at least two parts of \mathcal{P}^* .

Evaluating $CI(X_{\mathcal{M}})$: The Hypergraphical Source

- Consider a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$.
- $\mathcal{V} = \mathcal{M}$.
- Associate with each hyperedge $e \in \mathcal{E}$ an i.i.d. sequence of *n* Bernoulli (1/2) random variables ξ_e^n .
- $\bullet\,$ Random variables associated with distinct hyperedges in ${\boldsymbol {\cal E}}$ are independent.
- Define a multiterminal source as follows: $X_i^n = (\xi_e^n : e \in \mathcal{E} \text{ such that } i \in e).$
- The multiterminal source $X_{\mathcal{M}}^n$ is known as the hypergraphical source.

Theorem

For a hypergraphical source we have $Cl(X_{\mathcal{M}}) = |\mathcal{E}_{\mathcal{P}^*}|$, where $\mathcal{E}_{\mathcal{P}^*}$ is the set of hyperedges intersecting with at least two parts of \mathcal{P}^* .

Evaluating $CI(X_{\mathcal{M}})$: The Hypergraphical Source

- Consider a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$.
- $\mathcal{V} = \mathcal{M}$.
- Associate with each hyperedge $e \in \mathcal{E}$ an i.i.d. sequence of *n* Bernoulli (1/2) random variables ξ_e^n .
- Random variables associated with distinct hyperedges in $\boldsymbol{\mathcal{E}}$ are independent.
- Define a multiterminal source as follows: $X_i^n = (\xi_e^n : e \in \mathcal{E} \text{ such that } i \in e).$
- The multiterminal source $X_{\mathcal{M}}^n$ is known as the hypergraphical source.

Theorem

For a hypergraphical source we have $Cl(X_{\mathcal{M}}) = |\mathcal{E}_{\mathcal{P}^*}|$, where $\mathcal{E}_{\mathcal{P}^*}$ is the set of hyperedges intersecting with at least two parts of \mathcal{P}^* .

The Lower Bound is Loose

- Consider the following hypergraphical model.
 - m = 4 and $\mathcal{E} = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}\}.$
 - The random variables $(\xi_e)_{e \in \mathcal{E}}$ are Bernoulli (1/2) random variables.
 - $\mathcal{P}^* = \{\{1, 2, 3\}, \{4\}\}$ and $I(X_{\mathcal{M}}) = 1$.
- Therefore, $CI(X_{\mathcal{M}}) = 1$ and hence, $CI(X_{\mathcal{M}}) I(X_{\mathcal{M}}) = 0$.
- However, $R_{\text{SK}} > 0$ as (X_1, X_2) is independent of X_4 .

The Lower Bound is Loose

- Consider the following hypergraphical model.
 - m = 4 and $\mathcal{E} = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}\}.$
 - The random variables $(\xi_e)_{e \in \mathcal{E}}$ are Bernoulli (1/2) random variables.
 - $\mathcal{P}^* = \{\{1, 2, 3\}, \{4\}\}$ and $I(X_{\mathcal{M}}) = 1$.

- Therefore, $CI(X_{\mathcal{M}}) = 1$ and hence, $CI(X_{\mathcal{M}}) I(X_{\mathcal{M}}) = 0$.
- However, $R_{
 m SK} > 0$ as (X_1, X_2) is independent of X_4 .

When is a Source R_{SK} -maximal?

Theorem

A multiterminal source $X_{\mathcal{M}}$ with fundamental partition \mathcal{P}^* is R_{SK} -maximal if for all $A \in \mathcal{P}^*$ we have $H(X_A|X_{A^c}) = 0$.

Theorem

A hypergraphical source $\mathcal{H} = (\mathcal{M}, \mathcal{E})$ is R_{SK} -maximal iff $\mathcal{E} = \mathcal{E}_{\mathcal{P}^*}$.

• **Example:** Hypergraphical source defined on the complete *t*-uniform hypergraph $K_{m,t}$:

 $\mathcal{V} = \mathcal{M}.$ \mathcal{E} is the set of all *t*-subsets of $\mathcal{M}.$

