Typestate Analysis

for Android Applications

Ashish Mishra, Y.N. Srikant, Aditya Kanade

Indian Institute of Science

Ashish Mishra, Y.N. Srikant, Aditya Kanade Typestate Analysis for Android Applications

Outline

@ Android

© Typestate Analysis

© Motivation

0 Approach and Results

Ashish Mishra, Y.N ikant, Aditya Kanade Typestate Analysis for Android Appli

Android

Android Applications

Android Components
@ Android applications are set of code segments called Components which interact
with each other via a variant of IPC Binder called as Intent.

@ Four different kinds of Components, viz. Activity , Service, ContentProvider and
BroadcastReceiver.

@ Each application (app) runs in a separate process for security and interact with
other apps and System processes using Asynchronous Intents.

Control Flow in Android Applications

@ Apps are developed to run in an environment(Android Framework) which
controls the major chunk of control flow in applications.

@ Android apps have a complex control and data flow, which can be
attributed to

o Asynchronous method calls and message passing via Intent passing.
o Life cycle callbacks from the System services to app components.
@ Analysis of such programs need a precise modeling of this control and data
flow in Android apps, failing which may lead both to imprecise and
unsound results.

Ashish Mishra, Y.N. Srikant, Aditya Kanade Typestate Analysis for Android Applications

Android

Android Applications

[Android API |

User navigates
back to

the activiy.

e onhesan) |

The activity

comesto the

foreground,
The activity
comes to
foreground.

Other applications
need memory.

Service The activity is no longer visible.

onStop()

\ e
Rece.ve\rs_;)
,e

Inter Component Communications

fered on some systemiuser
event

Component Life Cycle

source http://www.developer.android.com/

a Kanade pestate Analysis for Andri

Typestate Analysis

Typestate

Quoting Storm and Yemini

... Whereas the type of a data object determines the set of operations ever
permitted on it, the typestate determines the subset of these operations which
are permitted in a particular context”.

Typestate Analysis

@ The resource objects and many other Java objects, put a stateful
restriction on the permitted operations on them.

@ [terators allow next operations only when the iterator has another element
and the operation is invalid otherwise.

@ Android system resource APIs for Camera, MediaPlayer etc. follow a much
richer set of restriction rules.
@ These bugs are hard to find because-
e The point of detection is far separated from there point of origin by the
runtime both in terms of time and space.
o Caused by the semantics of these objects, independent from the normal
semantics of the program.
o Traces generated contain no information regarding the validity of the State
of the object.

Ashish Mishra, Y.N. Srikant, Aditya Kanade Typestate Analysis for Android Applications

Motivation

A Database Android App.

1 FirstActivity extends Activity { 19 DataBaseActivity extends Activity {

2 SQLiteDatabase mydatabase = null; 20 onCreate(Bundle savedinstanceState) {

3 onCreate(Bundle savedlnstanceState) { 21 FirstActivity .mydatabase. beginTransaction

4 myDBhelper = new MyDBHelper(this); H

5 mydatabase = myDBhelper. 22 FirstActivity . mydatabase.close();
getWritableDatabase () ; 23 //ERROR

6 Intent intent = 24

7 new Intent(this, DataBaseActivity.class); 25 }

8 startActivity (intent);

9 }

10 onStart () {

11 Cursor resultSet =

12 mydatabase.rawQuery (" Select _x_from_myTable” , null

13 [...]

14 }

15 onPause () { getDataBse()

16 mydatabase. close () ;

17 rawQuery(...),
18 } ! beginTransactio

release()

A DataBase Application

State Automaton for SQLiteDatabase

a Kanade pestate Analysis for Android Applicatiol

Approach and Results

Asynchronous Inter-Component Control Flow

onCreate.start
[SQLiteDatabase
db.getDataBase()

onCreate.end ‘

onCreate.start

db.beginTxn()

onResume.start
onResume.end

onCreate.end

onF'alIse.sLan
db.close()

onPause.end

dispatch -

Asynchronous CFG for the Example app

Srikant, Aditya Kanade pestate Analysis for Android Appli

Approach and Results

Approach Overview

Analysis
o A precise and correct modelling of Android Asynchronous control flow, call
backs and Component life cycles.
@ Generating AICFG , an asycnhronous Inter-procedural Control Flow Graph
for the application.
@ A flow insensitive whole app , alias analysis to soundly track state

changes. A flow and context sensitive whole app, Typestate analysis, using
graph reachability based inter-procedural analysis.

InterProc Flow TypeSae i
and Gontext Sensitive
TypeState Proparty TypeState Analysis > Typastate Vielating
using AHS Traces

Automata
+
apk AICFG

Alias Analysis

Asynchronous ACG
> | Call Graph > Agync ImterProc
Generator CFG Generator

Flow Diagram for Typestate analysis

Approach and Results

First work on Typestate analysis for Android applications.

@ We add 10 new test benchmarks in Android benchmarks suite
DroidBench, from the Soot Android analysis group.

We Compare our results against the Typestate analysis build over the CFG
used by other works (lccTA* and AmanDroid?).

@ We perform better than them, both in terms of FPs and TPs.

Model Based lccTA based

Analysis Analysis
AppName Actual Viola- Violations TP FN FP violations TP FN FP

tions found found

Camra API 1 1 1 0 0 1 0 1
MediaPlayer 2 2 2 0 0 1 0 2 1
API
SQLite API 3 4 3 0 1 1 0 3 1
DataBases 2 2 2 0 0 1 0 2 1
Files 1 1 1 0 0 1 0 1 1
SocketsFiles 1 1 1 0 0 1 0 1 1
Streams 2 2 2 0 0 1 1 1 0

[1] L. Li, et. al. lccTA: Detecting Inter-Component Privacy Leaks in Android Apps. In Proceedings of the 37th International Conference
on Software Engineering (ICSE 2015), 2015

[2] F. Wei et. al. Amandroid: A precise and general inter-component data flow analysis framework for security vetting of android apps. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS’ 14, pages 1329-1341, New York,
NY, USA, 2014. ACM.

Ashish Mishra, Y.N ikant, Aditya Kanade pestate Analysis for Android Applications

Approach and Results

Conclusion

@ Gave a first precise and correct model for the Asynchronous control flow
and life cycles and ICC in Android apps.

@ Performed a first, sound Typestate analysis over android apps and
compared the results against the control flow semantics used by other
Android static analysis works.

@ One limitation occurs due to the use of RHS for the analysis, which does
not scale for big programs, increasing scalability is one future direction we
aim at.

Ashish Mishra, Y.N. Srikant, Aditya Kanade Typestate Analysis for Android Applications

Approach and Results

Thank you !
Happy to take Questions.

Ashish Mishra, Y.N. Srikant, Aditya Kanade Typestate Analysis for Android Applications

	Android
	Typestate Analysis
	Motivation
	Approach and Results

