Precise Analysis of Private and Shared
Caches for tight WCET estimates

Kartik Nagar
Advisor : Y N Srikant



The WCET Problem

Program
P

WCET Problem : To determine W such that
W = Actual Execution Timeof Pon A

Architecture
A




The WCET Problem

Uses of WCET:
* Primarily in Real time systems, to prove all

deadlines are always met.
P * Also used in finding performance bugs

Program

Architecture

A

WCET Problem : To determine W such that
W > Actual Execution Time of P on A



General Architectural Model

1-10 cycles ,
Processor < y \- 30-100 cycles Main Memory

Cache

* Small (1 KB -4 MB)
 Hardware Controlled
* Least Recently Used




Cache Analysis

Purpose — To statically predict cache behavior which can be safely used
for WCET estimation

Importance - Has a huge impact on the precision of the WCET estimate

Standard Approach — To find worst-case cache behavior of every
memory access individually across all execution instances



lssues

* Highly imprecise for shared caches in multi-core architectures
* Almost impossible to statically guarantee individual cache hits due to
interfering accesses from other cores

* Cannot capture complex cache behavior of groups of memory
accesses in private caches

* Quite common in real-world programs



Our Contributions

ILP-based [RTAS 14]
Shared Cache Analysis

Algorithmic[TECS]

Target worst-case cache behavior
of groups of memory accesses

ILP-based [VMCAI 15]
Private Cache Analysis

Algorithmic



Shared Cache Analysis Problem

* Given assignment of programs to cores, find the shared cache
behavior of each program

* Primary Issue : Shared cache accesses made by other cores can evict
cache blocks of program under analysis and cause extra cache misses.

* Due to interfering accesses, it is almost impossible to guarantee that
an access will always hit the cache.



Our Approach — Worst Case Interference
Placement

* Instead of finding which accesses are guaranteed to be cache hits, we
find how many accesses are guaranteed to hit the cache.

* Shared cache analysis as an optimization problem:

* Distribute interfering accesses across a program to cause the maximum
number of misses.



Overview of our approach

Find shared cache hitsin isolation

Abstract Interpretation based static analysis

A 4

Characterizeimpact of interferences on individual cache hits

A 4

Cache Hit Paths

- _ Abstract Interpretation based static analysis
Eviction Distance

Distribute interferences to maximize number of cache misses

Integer Linear Programming-based approac

Greedy Algorithmic approach




Some properties of our approach

* Qur approach guarantees that the increase in WCET due to shared
cache interference would be /inear in the amount of interference.

* We also show that shared cache analysis is a computationally hard
problem.

* Findingthe worst-case path in the program becomes an NP-Hard problem due
to shared cache interference.

* We propose an approximate polynomial-time algorithmic approach
which does not lose precision for low amount of interference.



Results

Average Precision

A ILP-based WCIPHHApproximate WCIP

- Improvement = 26%

[
NN

AN

A

) - -] S - -] o o=
I~ Ne In <t N ™ i

(9 ur) O M Ul juswoAoadu] uorstaa g

Benchmarks



Private Cache Analysis Problem

* No interferences, due to multiple program paths, an access may hit or
miss the cache in different execution instances.

* The state-of-the-art approach classifies an access as a cache hit only if
it is guaranteed to hit the cache across all execution instances.

* Cache hit-miss prediction can be refined in several ways

1. Two accesses may never miss the cache togetherin the same execution
instance.

2. An access inside a loop may not miss the cache in all iterations.
3. An access may not miss the cache in the worst-case execution instance.



Overview of our approach

Find accesses which are not guaranteed to hit the cache

Abstract Interpretation based static analysis

A 4

Characterize the program paths along which individual accesses miss the cache

Cache Miss Paths Abstract Interpretation based static analysis

A 4

Analyze cache miss paths of accesses to refine prediction

Integer Linear Programming-based approac

Algorithmic approach




Experimental Results

mILP-based ™ Algorithmic

S 25
=
< 20
o
>
S 15
3
E 10 Average Precision
3 Improvement = 8%
8 5
CHEm L
3 expint compress minver binarysearch
r"f adpcm select crc ndes
Benchmarks

Algorithmic approach matches precision improvement of ILP-based approach



Conclusion

* In this thesis, we have proposed precise, scalable approaches to
cache analysis aimed towards tighter estimation of WCET.

* Shared cache analysis in multi-cores

* Our approach, called Worst Case Interference Placement, is significantly
precise than previous approaches.

* Private cache analysis

* Reasonable precision improvementover previous approaches with a
moderate increase in analysis time.



Publications based on the thesis

1. Precise shared cache analysis using optimal interference placement.
Kartik Nagar and Y.N. Srikant. 20th IEEE Real Time and Embedded

Technology and Applications Symposium (RTAS), 2014.

2. Path sensitive cache analysis using cache miss paths. Kartik Nagar
and Y.N. Srikant. 16th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI), 2015.

3. Fast and Precise Worst Case Interference Placement for Shared
Cache Analysis. Kartik Nagar and Y.N. Srikant. Accepted in ACM
Transactions on Embedded Computing Systems (TECS), 2015.





