
Precise	
  Analysis	
  of	
  Private	
  and	
  Shared	
  
Caches	
  for	
  tight	
  WCET	
  estimates

Kartik Nagar
Advisor	
  :	
  Y	
  N	
  Srikant



The	
  WCET	
  Problem

Program
P

Architecture
A

WCET	
  Problem	
  :	
  To	
  determine	
  W	
  such	
  that	
  
W	
  ≥	
  Actual	
  Execution	
  Time	
  of	
  P	
  on	
  A	
  



The	
  WCET	
  Problem

Program
P

Architecture
A

WCET	
  Problem	
   :	
  To	
  determine	
  W	
  such	
  that	
  
W	
  ≥	
  Actual	
  Execution	
  Time	
  of	
  P	
  on	
  A	
  

Uses	
  of	
  WCET:
• Primarily	
  in	
  Real	
  time	
  systems,	
  to	
  prove	
  all	
  
deadlines	
  are	
  always	
  met.
• Also	
  used	
  in	
  finding	
  performance	
  bugs



General	
  Architectural	
  Model	
  

Processor Main	
  Memory

Cache

1-­‐10	
  cycles 30-­‐100	
  cycles

• Small	
  (1	
  KB	
  – 4	
  MB)
• Hardware	
  Controlled
• Least	
  Recently	
  Used



Cache	
  Analysis

Purpose	
  – To	
  statically	
  predict	
  cache	
  behavior	
  which	
  can	
  be	
  safely	
  used	
  
for	
  WCET	
  estimation

Importance	
  -­‐ Has	
  a	
  huge	
  impact	
  on	
  the	
  precision	
  of	
  the	
  WCET	
  estimate
Standard	
  Approach	
  – To	
  find	
  worst-­‐case	
  cache	
  behavior	
  of	
  every	
  
memory	
  access	
  individually	
  across	
  all	
  execution	
  instances



Issues

• Highly	
  imprecise	
  for	
  shared	
  caches	
  in	
  multi-­‐core	
  architectures
• Almost	
  impossible	
  to	
  statically	
  guarantee	
  individual	
  cache	
  hits	
  due	
  to	
  
interfering	
  accesses	
  from	
  other	
  cores

• Cannot	
  capture	
  complex	
  cache	
  behavior	
  of	
  groups	
  of	
  memory	
  
accesses	
  in	
  private	
  caches
• Quite	
  common	
  in	
  real-­‐world	
  programs



Our	
  Contributions

Shared	
  Cache	
  Analysis

Private	
  Cache	
  Analysis

ILP-­‐based	
  [RTAS	
  14]

Algorithmic	
  [TECS]

ILP-­‐based	
  [VMCAI	
  15]

Algorithmic

Target	
  worst-­‐case	
  cache	
  behavior
of	
  groups of	
  memory	
  accesses



Shared	
  Cache	
  Analysis	
  Problem

• Given	
  assignment	
  of	
  programs	
  to	
  cores,	
  find	
  the	
  shared	
  cache	
  
behavior	
  of	
  each	
  program
• Primary	
  Issue	
  :	
  Shared	
  cache	
  accesses	
  made	
  by	
  other	
  cores	
  can	
  evict	
  
cache	
  blocks	
  of	
  program	
  under	
  analysis	
  and	
  cause	
  extra	
  cache	
  misses.
• Due	
  to	
  interfering	
  accesses,	
  it	
  is	
  almost	
  impossible	
  to	
  guarantee	
  that	
  
an	
  access	
  will	
  always	
  hit	
  the	
  cache.



Our	
  Approach	
  – Worst	
  Case	
  Interference	
  
Placement
• Instead	
  of	
  finding	
  which accesses	
  are	
  guaranteed	
  to	
  be	
  cache	
  hits,	
  we	
  
find	
  how	
  many	
  accesses	
  are	
  guaranteed	
  to	
  hit	
  the	
  cache.
• Shared	
  cache	
  analysis	
  as	
  an	
  optimization	
  problem:
• Distribute	
  interfering	
  accesses	
  across	
  a	
  program	
  to	
  cause	
  the	
  maximum	
  
number	
  of	
  misses.



Overview	
  of	
  our	
  approach

Distribute	
  interferences	
  to	
  maximize	
  number	
  of	
  cache	
  misses
Integer	
  Linear	
  Programming-­‐based	
  approach

Greedy	
  Algorithmic	
  approach

Characterize	
  impact	
  of	
  interferences	
  on	
  individual	
  cache	
  hits
Cache	
  Hit	
  Paths
Eviction	
  Distance

Abstract	
  Interpretation	
  based	
  static	
  analysis

Find	
  shared	
  cache	
  hits	
  in	
  isolation

Abstract	
  Interpretation	
  based	
  static	
  analysis



Some	
  properties	
  of	
  our	
  approach

• Our	
  approach	
  guarantees	
  that	
  the	
  increase	
  in	
  WCET	
  due	
  to	
  shared	
  
cache	
  interference	
  would	
  be	
  linear in	
  the	
  amount	
  of	
  interference.
• We	
  also	
  show	
  that	
  shared	
  cache	
  analysis	
  is	
  a	
  computationally	
  hard	
  
problem.
• Finding	
  the	
  worst-­‐case	
  path	
  in	
  the	
  program	
  becomes	
  an	
  NP-­‐Hard	
  problem	
  due	
  
to	
  shared	
  cache	
  interference.

• We	
  propose	
  an	
  approximate	
  polynomial-­‐time	
  algorithmic	
  approach	
  
which	
  does	
  not	
  lose	
  precision	
  for	
  low	
  amount	
  of	
  interference.	
  



Results

Average	
  Precision
Improvement	
  =	
  26%



Private	
  Cache	
  Analysis	
  Problem

• No	
  interferences,	
  due	
  to	
  multiple	
  program	
  paths,	
  an	
  access	
  may	
  hit	
  or	
  
miss	
  the	
  cache	
  in	
  different	
  execution	
  instances.	
  
• The	
  state-­‐of-­‐the-­‐art	
  approach	
  classifies	
  an	
  access	
  as	
  a	
  cache	
  hit	
  only	
  if	
  
it	
  is	
  guaranteed	
  to	
  hit	
  the	
  cache	
  across	
  all	
  execution	
  instances.
• Cache	
  hit-­‐miss	
  prediction	
  can	
  be	
  refined	
  in	
  several	
  ways

1. Two	
  accesses	
  may	
  never	
  miss	
  the	
  cache	
  together	
  in	
  the	
  same	
  execution	
  
instance.

2. An	
  access	
  inside	
  a	
  loop	
  may	
  not	
  miss	
  the	
  cache	
  in	
  all	
  iterations.
3. An	
  access	
  may	
  not	
  miss	
  the	
  cache	
  in	
  the	
  worst-­‐case	
  execution	
  instance.



Overview	
  of	
  our	
  approach

Analyze	
  cache	
  miss	
  paths	
  of	
  accesses to	
  refine	
  prediction
Integer	
  Linear	
  Programming-­‐based	
  approach

Algorithmic	
  approach

Characterize the	
  program	
  paths	
  along	
  which	
  individual	
  accesses	
  miss	
  the	
  cache

Cache	
  Miss	
  Paths Abstract	
  Interpretation	
  based	
  static	
  analysis

Find	
  accesses	
  which	
  are	
  not	
  guaranteed to	
  hit	
  the	
  cache

Abstract	
  Interpretation	
  based	
  static	
  analysis



Experimental	
  Results

Algorithmic	
  approach	
  matches	
  precision	
  improvement	
  of	
  ILP-­‐based	
  approach

Average	
  Precision
Improvement	
  =	
  8%



Conclusion

• In	
  this	
  thesis,	
  we	
  have	
  proposed	
  precise,	
  scalable	
  approaches	
  to	
  
cache	
  analysis	
  aimed	
  towards	
  tighter	
  estimation	
  of	
  WCET.
• Shared	
  cache	
  analysis	
  in	
  multi-­‐cores
• Our	
  approach,	
  called	
  Worst	
  Case	
  Interference	
  Placement,	
  is	
  significantly	
  
precise	
  than	
  previous	
  approaches.

• Private	
  cache	
  analysis
• Reasonable	
  precision	
  improvement	
  over	
  previous	
  approaches	
  with	
  a	
  
moderate	
  increase	
  in	
  analysis	
  time.



Publications	
  based	
  on	
  the	
  thesis

1. Precise	
  shared	
  cache	
  analysis	
  using	
  optimal	
  interference	
  placement.	
  
Kartik Nagar	
  and	
  Y.N.	
  Srikant.	
  20th	
  IEEE	
  Real	
  Time	
  and	
  Embedded	
  
Technology	
  and	
  Applications	
  Symposium	
  (RTAS),	
  2014.	
  

2. Path	
  sensitive	
  cache	
  analysis	
  using	
  cache	
  miss	
  paths.	
  Kartik Nagar	
  
and	
  Y.N.	
  Srikant.	
  16th	
  International	
  Conference	
  on	
  Verification,	
  
Model	
  Checking,	
  and	
  Abstract	
  Interpretation	
  (VMCAI),	
  2015.	
  

3. Fast	
  and	
  Precise	
  Worst	
  Case	
  Interference	
  Placement	
  for	
  Shared	
  
Cache	
  Analysis.	
  Kartik Nagar	
  and	
  Y.N.	
  Srikant.	
  Accepted	
  in	
  ACM	
  
Transactions	
  on	
  Embedded	
  Computing	
  Systems	
  (TECS),	
  2015.	
  




