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The WCET Problem

Uses of WCET:
* Primarily in Real time systems, to prove all

deadlines are always met.
P * Also used in finding performance bugs

Program

Architecture

A

WCET Problem : To determine W such that
W > Actual Execution Time of P on A



General Architectural Model

1-10 cycles ,
Processor < y \- 30-100 cycles Main Memory

Cache

* Small (1 KB -4 MB)
 Hardware Controlled
* Least Recently Used




Cache Analysis

Purpose — To statically predict cache behavior which can be safely used
for WCET estimation

Importance - Has a huge impact on the precision of the WCET estimate

Standard Approach — To find worst-case cache behavior of every
memory access individually across all execution instances



lssues

* Highly imprecise for shared caches in multi-core architectures
* Almost impossible to statically guarantee individual cache hits due to
interfering accesses from other cores

* Cannot capture complex cache behavior of groups of memory
accesses in private caches

* Quite common in real-world programs



Our Contributions

ILP-based [RTAS 14]
Shared Cache Analysis

Algorithmic[TECS]

Target worst-case cache behavior
of groups of memory accesses

ILP-based [VMCAI 15]
Private Cache Analysis

Algorithmic



Shared Cache Analysis Problem

* Given assignment of programs to cores, find the shared cache
behavior of each program

* Primary Issue : Shared cache accesses made by other cores can evict
cache blocks of program under analysis and cause extra cache misses.

* Due to interfering accesses, it is almost impossible to guarantee that
an access will always hit the cache.



Our Approach — Worst Case Interference
Placement

* Instead of finding which accesses are guaranteed to be cache hits, we
find how many accesses are guaranteed to hit the cache.

* Shared cache analysis as an optimization problem:

* Distribute interfering accesses across a program to cause the maximum
number of misses.



Overview of our approach

Find shared cache hitsin isolation

Abstract Interpretation based static analysis

A 4

Characterizeimpact of interferences on individual cache hits

A 4

Cache Hit Paths

- _ Abstract Interpretation based static analysis
Eviction Distance

Distribute interferences to maximize number of cache misses

Integer Linear Programming-based approac

Greedy Algorithmic approach




Some properties of our approach

* Qur approach guarantees that the increase in WCET due to shared
cache interference would be /inear in the amount of interference.

* We also show that shared cache analysis is a computationally hard
problem.

* Findingthe worst-case path in the program becomes an NP-Hard problem due
to shared cache interference.

* We propose an approximate polynomial-time algorithmic approach
which does not lose precision for low amount of interference.



Results

Average Precision

A ILP-based WCIPHHApproximate WCIP

- Improvement = 26%
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Private Cache Analysis Problem

* No interferences, due to multiple program paths, an access may hit or
miss the cache in different execution instances.

* The state-of-the-art approach classifies an access as a cache hit only if
it is guaranteed to hit the cache across all execution instances.

* Cache hit-miss prediction can be refined in several ways

1. Two accesses may never miss the cache togetherin the same execution
instance.

2. An access inside a loop may not miss the cache in all iterations.
3. An access may not miss the cache in the worst-case execution instance.



Overview of our approach

Find accesses which are not guaranteed to hit the cache

Abstract Interpretation based static analysis

A 4

Characterize the program paths along which individual accesses miss the cache

Cache Miss Paths Abstract Interpretation based static analysis

A 4

Analyze cache miss paths of accesses to refine prediction

Integer Linear Programming-based approac

Algorithmic approach




Experimental Results
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Algorithmic approach matches precision improvement of ILP-based approach



Conclusion

* In this thesis, we have proposed precise, scalable approaches to
cache analysis aimed towards tighter estimation of WCET.

* Shared cache analysis in multi-cores

* Our approach, called Worst Case Interference Placement, is significantly
precise than previous approaches.

* Private cache analysis

* Reasonable precision improvementover previous approaches with a
moderate increase in analysis time.
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