
Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Automatic Optimization Of Arrays In Affine
Loop-Nests

Somashekaracharya G. Bhaskaracharya1,2

Advisor: Uday Bondhugula1

CSA, Indian Institute of Science1

National Instruments2

April 29, 2016

1 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Outline

1 Introduction

2 Intra-Array Storage Optimization Problem

3 Conflicts, Conflict Satisfaction

4 Experimental Evaluation

5 Summary

2 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Storage Optimization

Basic Goal Reuse memory locations for values without
overlapping lifetimes

− Reuse within a given array or across different arrays

− Crucial for data-intensive programs
− run larger problem size with a fixed amount of main memory
− stencils, image processing applications, DSL compilers

− affine loop-nests

3 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Contracting A Particular Array

for(t=1;t<=N;i++)
for(i=1;i<=N;i++)
/*S*/ A[t,i]=f(A[t-1,i-1]

+A[t-1,i]
+A[t-1,i+1]);

(a) 1-d stencil using N2 storage

Dependences (1,−1), (1, 0) and (1, 1)

Live-out A[T , ∗]

for(t=1;t<=N;i++)
for(i=1;i<=N;i++)
/*S*/ A[t%2,i]=f(A[(t-1)%2,i-1]

+A[(t-1)%2,i]
+A[(t-1)%2,i+1]);

(b) Array contracted to size 2× N

for(t=1;t<=N;i++)
for(i=1;i<=N;i++)
/*S*/ A[(i-t+N)%(N+1)]=f(A[(i-t+N)%(N+1)]

+A[(i-t+1+N)%(N+1)]
+A[(i-t+2+N)%(N+1)]);

(c) Array contracted to N+1 cells.
Storage optimal!

4 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Reuse Across Arrays - Image Processing Applications

#define isbound(i,j) (i==0)||(i==(N-1))
||(j==0)||(j==(N-1))

for(int i=0; i<N; ++i)
for(int j=0; j<N: ++j)

/*S0*/ A0[i,j]= isbound(i,j) ? a[i,j]
:a[i,j]+(a[i-1,j]+a[i+1,j]
+a[i,j-1]+a[i][j+1]);

for(int i=0; i<N; ++i)
for(int j=0; j<N: ++j)

/*S1*/ A1[i,j]=isbound(i,j) ? A0[i,j]
:A0[i,j]+(A0[i-1,j]+A0[i+1,j]
+A0[i,j-1]+A0[i,j+1]);

for(int i=0; i<N; ++i)
for(int j=0; j<N: ++j)

/*S2*/ A2[i,j]=!isbound(i,j) ? A1[i][j]
:A1[i,j]+(A1[i-1,j]+A1[i+1,j]
+A1[i,j-1]+A1[i,j+1]);

(a) A0, A1 are just intermediate arrays which
are not live-out.

S0 : A0[i, j]→ A[(i + 3) mod (N + 2), j mod N]

S1 : A1[i, j]→ A[(i + 1) mod (N + 2), j mod N]

S2 : A2[i, j]→ A[(i − 1) mod (N + 2), j mod N]

(b) The storage mapping enabling inter-array
reuse. Overall storage requirement is

reduced from 3N2 to N2 + N.

5 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Outline

1 Introduction

2 Intra-Array Storage Optimization Problem

3 Conflicts, Conflict Satisfaction

4 Experimental Evaluation

5 Summary

6 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

General Approach To The Problem

− Contract array along one or more directions to fixed sizes

Step 1: Determine good directions
− Canonical directions need not be good ones
− Affects dimensionality and storage size
− Can be the difference between N2, 2N,N + 1

storage for a given N × N array

Step 2: Minimize the array size along these directions
− Thoroughly studied by Lefebvre and

Feautrier[1998]

− No good heuristics for Step 1
− Darte et al[2005], Lefebvre and Feautrier[1998]

− work with canonical basis or assume that directions are given.

7 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

An Array Space Partitioning Approach

Storage Partitioning Hyperplane

Partitions the iteration space such that each partition uses a single memory location.

(-1,1)

i

t

i=1 i=N
t=1

t=N

Hyperplane (−1, 1) creating (2N − 1) partitions.

Good Directions? Storage hyperplanes with good orientations

Contraction? Minimize the number of partitions created

− Affects the resulting storage size

Dimensionality? Number of storage hyperplanes found

− Iteratively found until some criterion is met

8 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Outline

1 Introduction

2 Intra-Array Storage Optimization Problem

3 Conflicts, Conflict Satisfaction

4 Experimental Evaluation

5 Summary

9 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Conflicts Within An Array Space

Conflicting indices~i ./~j

Two array indices~i,~j, (~i 6=~j), conflict with each other and the conflict relation~i ./~j holds if
the corresponding array elements are simultaneously live under the given schedule θ.

for(i=2;i<=n;i++)
fib[i]=fib[i-1]+fib[i-2];
result=fib[n];

(a) Before contraction

for(i=2;i<=n;i++)
fib[i%2]=fib[(i-1)%2]+fib[(i-2)%2];
result=fib[n%2];

(a) After contraction

Dependences? (i − 2)→RAW i, (i − 1)→RAW i

Live Out? fib(n)

Conflicts? Each array index conflicts with its adjacent index: i ./ (i − 1)

=⇒ fib can be contracted to a 2-element array
Modulo storage mapping: fib[i]→ fib[i mod 2]

10 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Array Space Partitioning Through Conflict Satisfaction

for(t=1;t<=N;i++)
for(i=1;i<=N;i++)

/*S*/ A[t,i]=A[t,i-1]+A[t-1,i];
for(i=1;i<=N;i++)

result=result+A[i,N]+A[N,i];

(a) A producer-consumer loop-nest i

t

i=1 i=N
t=1

t=N

The flow dependences.
Live-out portion in yellow.

(t ′, i′)

i

t

i=1 i=N
t=1

t=N

Conflicts in different
conflict polyhedra.

Conflict Satisfaction

A conflict~i ./~j is said to be satisfied by a hyperplane ~Γ if ~Γ.~i − ~Γ.~j 6= 0 .

− Conflicting indices must be mapped to different partitions

11 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Example Revisited

for(t=1;t<=N;i++)
for(i=1;i<=N;i++)

/*S*/ A[t,i]=A[t,i-1]+A[t-1,i];
for(i=1;i<=N;i++)

result=result+A[i,N]+A[N,i];

(a) A producer-consumer loop-nest

(t ′, i′)

i

t

i=1 i=N
t=1

t=N

Conflicts in different
conflict polyhedra

(t ′, i′)

(-1,1)
i

t

i=1 i=N
t=1

t=N

(−1, 1) satisfies all conflicts

Candidate hyperplanes . . .

(1, 0) Satisfies only blue, green conflicts

(0, 1) Satisfies only red, green conflicts

(−1, 1) Satisfies all conflicts creating 2N− 1 partitions

(−2, 1) Satisfies all conflicts creating 3N − 2 partitions

(−3, 1) Satisfies all conflicts creating 4N − 2 partitions

Modulo Storage Mapping A[t , i]→ A[(i − t) mod (2N − 1)]

Storage as well as dimension optimal!

12 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Outline

1 Introduction

2 Intra-Array Storage Optimization Problem

3 Conflicts, Conflict Satisfaction

4 Experimental Evaluation

5 Summary

13 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Storage Mappings Obtained Using SMO tool

Table: Our approach (SMO) compared to the baseline (Lefebvre and Feautrier[1998])
with B being the loop blocking factor

Benchmark Modulo storage mapping Reduction SMO
(approx.) time

produce-consume baseline A[t mod N, i mod N] N
2SMO A[(i − t) mod (2N − 1)] 0.17s

blur-interleaved baseline blurx[y mod 3, x mod N] 1.5SMO blurx[(2x − y) mod (2N + 1)] 0.14s

blur-tiled baseline A[tx, ty, x mod B, y mod B] B
3SMO A[tx, ty, (y − 2x) mod (3B − 2)] 0.11s

harris-corner-tiled baseline sobel[tx, ty, x mod B, y mod B] B
3SMO sobel[tx, ty, (y − 2x) mod (3B − 2)] 0.12s

unsharp-mask-tiled baseline A[z, tx, ty, x mod B, y mod B] B
5SMO A[z, tx, ty, (y − 4x) mod (5B − 4)] 0.82s

LBM-D2Q9 baseline A[t mod 2, i mod N, j mod N] 2SMO A[(i − 2t) mod (N + 2), j mod N] 0.61s

LBM-D3Q19 baseline A[t mod 2, i mod N, j mod N, k mod N] 2SMO A[(i − 2t) mod (N + 2), j mod N, k mod N] 3.32s

LBM-D3Q27 baseline A[t mod 2, i mod N, j mod N, k mod N] 2SMO A[(i − 2t) mod (N + 2), j mod N, k mod N] 3.33s

diamond-tile baseline AB [tt mod B, ii mod (2B − 1)] B
3SMO AB [(tt − 3ii) mod (6B − 5)] 0.44s

stencil-1d-llelogram-tile baseline AB [tt mod B, ii mod B] B
3SMO AB [(tt − ii) mod (3B − 2)] 0.29s

stencil-1d-hex-tile baseline AB [tt mod B, ii mod (3B − 2)] B
3SMO AB [(−tt + 3ii) mod (9B − 7)] 1.15s

14 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Outline

1 Introduction

2 Intra-Array Storage Optimization Problem

3 Conflicts, Conflict Satisfaction

4 Experimental Evaluation

5 Summary

15 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Summary

− Intra-array and inter-array storage reuse
− Array space partitioning by finding good storage hyperplanes

− Heuristic driven by a fourfold objective function.
− greedy conflict satisfaction (impacts dimensionality)
− minimizes the partitions (minimizes dimension sizes)
− factors in inter-statement conflicts (exploits inter-statement reuse)

− Developed SMO tool—a polyhedral storage optimizer.
− Effective on several real-world examples.
− Storage mappings which are asymptotically better than those by existing

techniques.

16 / 17

Introduction Intra-Array Storage Optimization Problem Conflicts, Conflict Satisfaction Experimental Evaluation Summary

Acknowledgements And Publications

INRIA (France) for an associate team award POLYFLOW

National Instruments

1 Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, Albert Cohen
Automatic Storage Optimization for Arrays, ACM Transactions on Programming
Languages and Systems (TOPLAS), accepted in 2015.

2 Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, Albert Cohen SMO: An
Integrated Approach to Intra-Array and Inter-Array Storage Optimization, ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
St.Petersberg, USA, pages 526 - 538, Jan 2016.

17 / 17

