Automatic Optimization Of Arrays In Affine
Loop-Nests

Somashekaracharya G. Bhaskaracharya'2
Aadvisor: Uday Bondhugula'

CSA., Indian Institute of Science'
National Instruments?

April 29,2016



Infroduction

Outline

0 Infroduction



Infroduction

Storage Optimization

Basic Goal Reuse memory locations for values without
overlapping lifetimes

— Reuse within a given array or across different arrays

— Crucial for data-intensive programs

— run larger problem size with a fixed amount of main memory
— stencils, image processing applications, DSL compilers

— daffine loop-nests



Infroduction

Contracting A Particular Array

for(t=1;t<=N;i++)
for(i=1;i<=N;i++)
/¥S*/ Alth2,1]1=f (A[(t-1)%2,i-1]
+A[(t-1)%2,1]
+AL(e-1)%2,i+11);

for (t=1;t<=N;i++)
for(i=1;i<=N;i++)
/*S*/ Alt,i]l=f(A[t-1,i-1]

+A[t-1,i] (b) Array confracted to size 2 x N
+A[t-1,i+11);

i usi 2
(o) 1-d stencil using N° storage for (t=1;t<=N;i++)

for(i=1;i<=N;i++)
/%8*/ AL(i-t+N) % (N+1)1=f (AL (i-t+N) % (N+1)]
Dependences (1,—1),(1,0)and (1,1) AL t+1+N) % (N+1) ]

Live-out A[T, %] +AL(L-t+2+N) % (N+1)1)

(c) Array contracted to N+1 cells.
Storage optimal!



Infroduction

Reuse Across Arrays - Image Processing Applications

#define isbound(i,j) (i==0)[]|(i==(N-1))
11(G==0)11(j==(N-1))
for(int i=0; i<N; ++i)
for(int j=0; j<N: ++j)
/*#S0%/ AO[i,jl= isbound(i,j) ? ali,jl
rali,jl+(ali-1,j]+ali+1,j]
+ali,j-11+alil [j+11);

for(int i=0; i<N; ++i)
for(int j=0; j<N: ++j)
/*S1#/ A1[i,jl=isbound(i,j) ? AO[i,]]
:A0[4,j]1+(A0[i-1,31+A0[i+1,5]
+A0[1,j-1]1+A0[1,j+11);

for(int i=0; i<N; ++i)
for(int j=0; j<N: ++j)
/*S2*/ A2[i,jl='isbound(i,j) 7 A1[il[j]
(A1[i,j1+(A1[i-1,j1+A1[i+1,5]
+A1[i,j-1]+A1[i,§+11);

() Ag. Ay are just intermediate arrays which
are not live-out.

So : Aol J] = A[(i+3) mod (N +2),jmod N]
S Al ] — Al(f+ 1) mod (N +2),j mod N|
S Agliyj] = Al(i — 1) mod (N +2),j mod N]

(b) The storage mapping enabling inter-array
reuse. Overall storage requirement is

reduced from 3N? to N2 + N.



Intra-Array Storage Optimization Problem

Outline

e Infra-Array Storage Optimization Problem



Intra-Array Storage Optimization Problem

General Approach To The Problem

— Conftract array along one or more directions to fixed sizes
Step 1: Determine good directions

— Canonical directions need not be good ones

— Affects dimensionality and storage size

— Can be the difference between N2, 2N, N + 1
storage for a given N x N array

Step 2: Minimize the array size along these directions
— Thoroughly studied by Lefebvre and
Feautrier(1998)
— No good heuristics for Step 1
— Darte et al(2005), Lefebvre and Feautrier(1998)
— work with canonical basis or assume that directions are given.



Intra-Array Storage Optimization Problem

An Array Space Partitioning Approach

Storage Partitioning Hyperplane

Partitions the iteration space such that each partition uses a single memory location.

Hyperplane (-1, 1) creating (2N — 1) partitions.

Good Directions? Storage hyperplanes with good orientations
Contraction? Minimize the number of partitions created
— Affects the resulting storage size
Dimensionality? Number of storage hyperplanes found
— Iteratively found until some criterion is met



Conflicts, Confiict Satisfaction

Outline

e Conflicts, Conflict Satisfaction



Conflicts, Confiict Satisfaction

Conflicts Within An Array Space

Conflicting indices i i j

Two array indices T,f (7;& f), conflict with each other and the confiict relation 7 < Tholds if
the corresponding array elements are simultaneously live under the given schedule 6.

for(i=2;i<=n;i++) for(i=2;i<=n;i++)
fib[il=fib[i-1]+fib[i-2]; fib[i%2]=fib[(i-1)%2]+fib[(i-2)%2];
result=fib[n]; result=fib[n%2];

(a) Before contraction (a) After contraction

Dependences? (i—2) —paw I, (i — 1) —paw i
Live Out? fib(n)
Conflicts? Each array index conflicts with its adjacent index: i > (i — 1)

— fib can be contracted to a 2-element array
Modulo storage mapping: fib[i] — fib[i mod 2]

10/17



Conflicts, Confiict Satisfaction

Array Space Partitioning Through Conflict Satisfaction

t=N-_e '(f/:ll,). .

for (t=1;t<=N;i++)
for(i=1;i<=N;i++)

/*8*/ A[t,il=A[t,i-1]+A[t-1,i];

for(i=1;i<=N;i++)
result=result+A[i,N]+A[N,i];

(a) A producer-consumer loop-nest L
The flow dependences. Conflicts in different

Live-out portion in yellow. conflict polyhedra.

Conflict Satisfaction

A conflict 7= J is said to be satisfied by a hyperplane T if I'.7 — F.j#0.

— Conflicting indices must be mapped to different partitions



Conflicts, Confiict Satisfaction

Example Revisited

=N Wiy

for (t=1;t<=N;i++)
for(i=1;i<=N;i++)

/#S*/ Alt,i]l=A[t,i-1]1+A[t-1,i];

for(i=1;i<=N;i++)
result=result+A[i,N]+A[N,i];

(a) A producer-consumer loop-nest o
Conflicts in different

confiict polyhedra (=1, 1) satisfies all conflicts

Candidate hyperplanes . ..
(1,0) Satisfies only blue, green conflicts

(0,1) Satisfies only red, green conflicts
(—1,1) Satisfies all conflicts creating 2N — 1 partitions
(—2,1) Satisfies all conflicts creating 3N — 2 partitions
(=3, 1) Satisfies all conflicts creating 4N — 2 partitions

Modulo Storage Mapping A[t,i] — A[(i — 1) mod (2N — 1)]
Storage as well as dimension optimal!



Experimental Evaluation

Outline

e Experimental Evaluation



Experimental Evaluation

Storage Mappings Obtained Using SMO tool

Table: our approach (SMO) compared to the baseline (Lefebvre and Feautrier(1998))
with B being the loop blocking factor

Benchmark Modulo storage mapping Reduction SMO
. ; (approx.) time
produce-consume bgs'\ilcl? © Aﬁ[jf_mg?ﬂlgg ('S,?,d_’\q])] ¥ 0.17s
blurinterleaved O b/g;/[r()é[xy " ?/;j nibijr?;/\? o ) 1S o
plurtiled baseline Altx, ty, x mod B, y mod B] B
SMO Altx, ty, (y — 2x) mod (3B — 2)] 3 0.11s
noriscomertied  Pgee  scbelirmesBymedd g
unshorp-masitied g on (6B 1) ! om
Lew-D209 MO Al 3h mad (N + 3) /mod M 2 oo
LBM-D3Q19 PO Al 20 mod (N -+ 3). mod Ak mod M 2 332
LBM-D3G27 PO Al 2h mod (N -+ 3).jmod Ak mod M 2 333
diamond-tile bcés,\fg] ° AZ[BT( ?Cid:i% i;“rggd(égfig)]])] %3 0.44s
stencil-1d-llelogram-tile bc;s,\jg]e A?[?,[‘;rmgdm%g Eggoisg])] %3 0.29s
stencil-1a-hex-file bosene ’:BB[[’Z:?,? < 35,?,)”?53 ((358 - 72))]] g 1iss



Outline

e Summary



Summary

— Infra-array and inter-array storage reuse
— Array space partitioning by finding good storage hyperplanes

— Heuiristic driven by a fourfold objective function.

— greedy conflict satfisfaction (impacts dimensionality)
— minimizes the partitions (Minimizes dimension sizes)
— factors in inter-statement conflicts (exploits inter-statement reuse)

— Developed SMO tool—a polyhedral storage optimizer.

— Effective on several real-world examples.
— Storage mappings which are asymptotically better than those by existing
techniques.



Acknowledgements And Publications

@ INRIA (France) for an associate team award PoLyFLow
@ National Instruments

0 Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, Albert Cohen
Automatic Storage Optimization for Arrays, ACM Transactions on Programming
Languages and Systems (TOPLAS), accepted in 2015.

Q Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, Albert Cohen SMO: An
Integrated Approach to Intra-Array and Inter-Array Storage Optimization, ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
St.Petersberg, USA, pages 526 - 538, Jan 2016.





