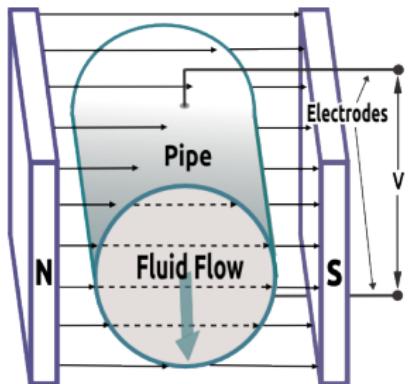


Stable Galerkin Finite Element Formulation for the Simulation of Electromagnetic Flowmeter


Sethupathy S. and Prof. Udaya Kumar

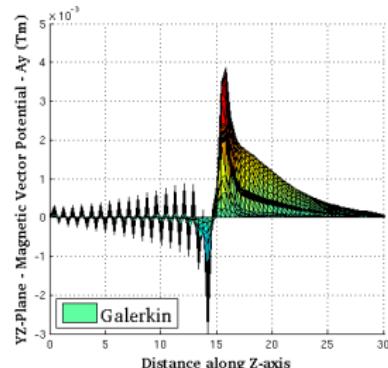
Department of Electrical Engineering,
Indian Institute of Science, Bangalore.

EECS Research Students Symposium - 2016
Indian Institute of Science, Bangalore
28-29 April 2016

Electromagnetic flowmeter

- ▶ Electromagnetic flowmeter is extensively employed for the measurement of liquid-metal flow rate in fast breeder reactors.
- ▶ Reliable measurement is essential for the control and safe operation of the reactor

- ▶ Experimental calibration is extremely difficult
- ▶ Theoretical approach is preferred

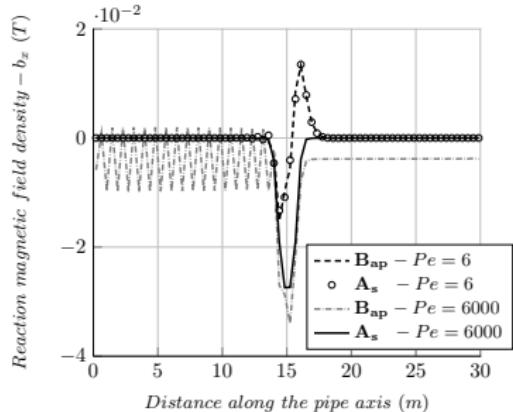
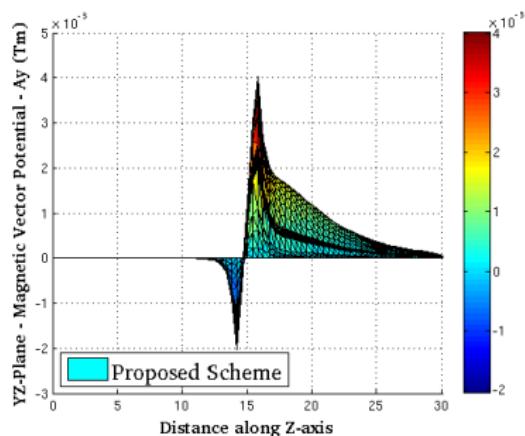

$$\sigma \nabla \phi - (\nabla \cdot \frac{1}{\mu} \nabla) \mathbf{A} - \sigma \mathbf{u} \times \nabla \times \mathbf{A} = \sigma \mathbf{u} \times \mathbf{B}_a$$

$$\nabla \cdot (\sigma \nabla \phi) - \nabla \cdot (\sigma \mathbf{u} \times \nabla \times \mathbf{A}) = \nabla \cdot (\sigma \mathbf{u} \times \mathbf{B}_a)$$

- ▶ Galerkin finite element method (GFEM) is a ready choice
- ▶ Only in very limited literature whole 3D version of the problem is simulated using GFEM [6]

Numerical simulation of Electromagnetic Flowmeter

- ▶ GFEM is known to suffer from numerical oscillations when $Pe = \mu\sigma|\mathbf{u}|\Delta z/2 > 1$. As remedy Streamline upwind/Petrov Galerkin (SU/PG) scheme is suggested in the allied literature [1] [2].
- ▶ SU/PG scheme introduces boundary error [4] [5] and non-physical current in the solution [8]
- ▶ In addition, SU/PG scheme needs calculation of stabilization parameter and requires more calculation for higher order elements.
- ▶ Scope of the work: To arrive at a 'Stable Galerkin Finite Element Formulation for Electromagnetic Flowmeter Analysis'

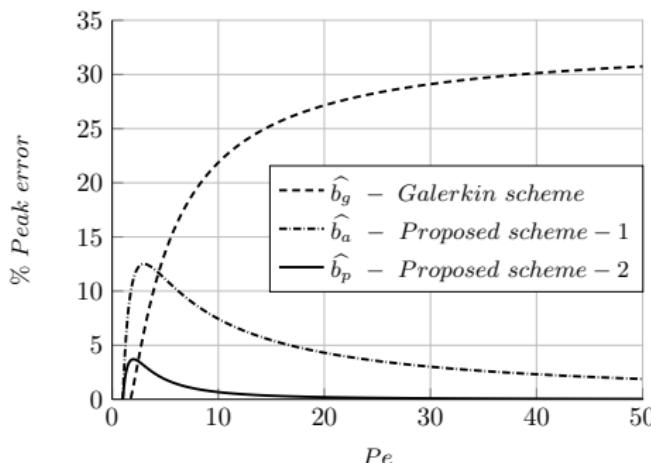



Approach

- ▶ Classically, numerical stability of the FEM solution is analyzed with the 1D version of the problem [3] [9]
- ▶ FEM equations for a regular grid takes the form of difference equation, which is employed for the required analysis
- ▶ In this work, the Z-transform approach is proposed so as to bring tools from control systems theory
- ▶ Accordingly for GFEM., relation between vector potential of reaction magnetic field (A_y) and the input field (B_x) can be written as,
$$\frac{A_y}{B_x} \simeq \frac{\Delta z}{3} \frac{(Z + 0.27)(Z + 3.73)}{(Z - 1)(Z + 1)}$$
- ▶ Pole at '-1' is responsible for the numerical oscillations
- ▶ Proposed approach: To seek re-formulation of the RHS so as to introduce necessary zeros
- ▶ **Scheme-1:** Input field on the RHS is restated in terms of magnetic vector potential [7]:
$$\frac{A_y}{A_{sy}} \simeq - \frac{(Z - 1)(Z + 1)}{(Z - 1)(Z + 1)}$$

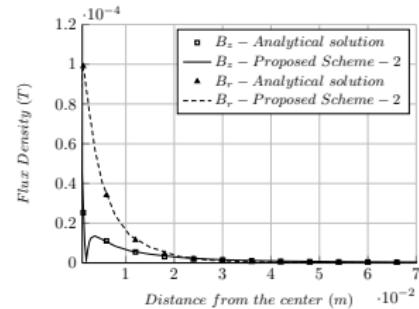
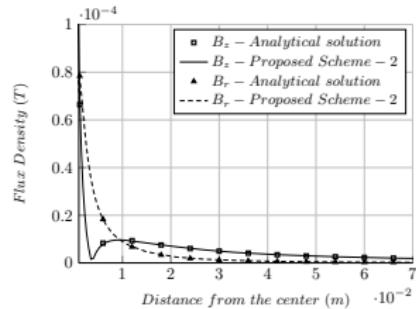
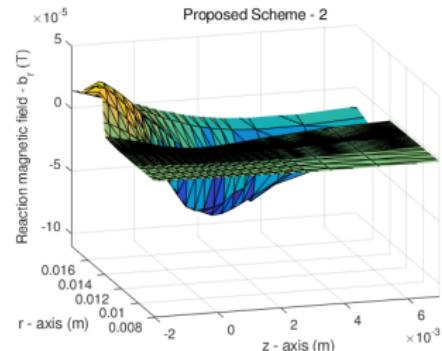
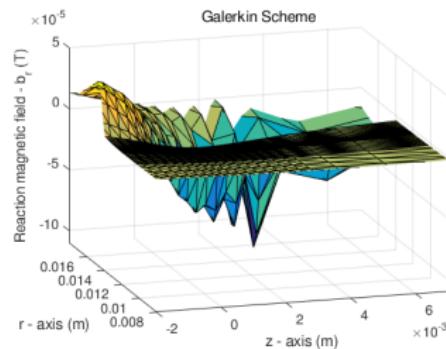
Proposed Scheme -1 - Simulation Results for flowmeter

- ▶ 33598 brick elements with graded structured mesh in flow direction ($\mu = 4\pi \times 10^{-7} Hm^{-1}$, $\sigma_{sodium} = 7.21 \times 10^6 Sm^{-1}$, $\sigma_{steel} = 1.16 \times 10^6 Sm^{-1}$)



- ▶ Works well only when input field varies only in the flow direction

Proposed Scheme - 2





- Weighted nodal input magnetic field is considered where the required weights are constrained so as to be consistent, as well as, brings in necessary zero

- Scheme 2:**
$$\frac{A_y}{B_x} \approx \frac{\Delta z}{2} \frac{(Z+1)^2}{(Z-1)(Z+1)}$$

- Performs better than 'scheme-1' - double zeros at '-1'.
- For both the schemes, extensive 1D and 2D Z-transform analysis has been performed to ascertain the characteristics of the numerical solution

Application to other moving conductor problems

- Scheme-2 gives stable results and it is matching well with the analytical solution of the TEAM-9 standard test problem

Summary and Conclusion

- ▶ Theoretical evaluation of the sensitivity of electromagnetic flowmeter is a preferred choice for liquid metal flow measurement
- ▶ Only numerical approach is feasible and GFEM is a ready choice. The GFEM suffer from numerical instability, when $Pe > 1$.
- ▶ Existing remedial measures in allied fields like SU/PG scheme gives non-physical solutions at the boundary.
- ▶ Two novel stable schemes have been proposed for graded regular mesh along the flow direction.
- ▶ Accurate results have been obtained for flowmeter and similar problems even at very high flow rates/velocity

Thank you

References I

- Alexander N Brooks and Thomas JR Hughes.
Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations.
Computer methods in applied mechanics and engineering, 32(1):199–259, 1982.
- I. Christie, D. F. Griffiths, A. R. Mitchell, and O. C. Zienkiewicz.
Finite element methods for second order differential equations with significant first derivatives.
International Journal for Numerical Methods in Engineering, 10(6):1389–1396, 1976.
- Thomas-Peter Fries and Hermann G Matthies.
A review of petrov–galerkin stabilization approaches and an extension to meshfree methods.
Technische Universität Braunschweig, Brunswick, 2004.

References II

- Thomas JR Hughes, Michel Mallet, and Mizukami Akira.
A new finite element formulation for computational fluid dynamics: II. beyond supg.
Computer Methods in Applied Mechanics and Engineering, 54(3):341–355, 1986.
- Eugenio Oñate, Francisco Zárate, and Sergio R Idelsohn.
Finite element formulation for convective–diffusive problems with sharp gradients using finite calculus.
Computer methods in applied mechanics and engineering, 195(13):1793–1825, 2006.
- Takeshi Shimizu, Noriyuki Takeshima, and Noboru Jimbo.
A numerical study on faraday-type electromagnetic flowmeter in liquid metal system, (i).
Journal of Nuclear Science and Technology, 37(12):1038–1048, 2000.

References III

Sethupathy Subramanian and Udaya Kumar.

Augmenting numerical stability of the galerkin finite element formulation for electromagnetic flowmeter analysis.

IET Science, Measurement & Technology, 2016.

Sethupathy Subramanian and Udaya Kumar.

Existence of boundary error transverse to the velocity in su/pg solution of moving conductor problem.

submitted for NEMO2016, 2016.

O.C. Zienkiewicz, R.L. Taylor, and P. Nithiarasu.

The Finite Element Method for Fluid Dynamics.

Elsevier Science, 2005.