Optimal Auctions for Two goods with Uniformly Distributed Valuations

EECS Symposium 2016

Thirumulanathan D
Advised by Prof. Rajesh Sundaresan and Prof. Y. Narahari
Department of Electrical Communication Engineering Indian Institute of Science, Bangalore

Overview

(1) Introduction
(2) Two-item case
(3) Our work
(4) Summary

Overview

(1) Introduction
(2) Two-item case
(3) Our work
(4) Summary

Introduction to Auctions

- When does an auction happen?

It happens when there are one or more agents vying for an item that is ready to be sold.

- What does designing an auction mean?

Deciding who should be allocated the item(s) and how much they pay. Mathematically, it is the design of two functions: the allocation function q and the payment function t.

- What is an optimal auction?

It is an auction mechanism that generates the highest expected revenue to the seller.

The setup

Consider the simple case of an auctioneer selling a single item to a single buyer. We have the following assumptions:

- The buyer has a valuation z for the item known only to him.
- z is picked from a distribution f. The distribution is known to both the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- Also, the buyer must NOT be asked to pay more than z.
- Recall that the auction design involves designing the allocation function q, and the payment function t

The setup

Consider the simple case of an auctioneer selling a single item to a single buyer. We have the following assumptions:

- The buyer has a valuation z for the item known only to him.
- z is picked from a distribution f. The distribution is known to both the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- Also, the buyer must NOT be asked to pay more than z.
- Recall that the auction design involves designing the allocation function q, and the payment function t

The setup

Consider the simple case of an auctioneer selling a single item to a single buyer. We have the following assumptions:

- The buyer has a valuation z for the item known only to him.
- z is picked from a distribution f. The distribution is known to both the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- Also, the buyer must NOT be asked to pay more than z.
- Recall that the auction design involves designing the allocation function q, and the payment function t

The setup

Consider the simple case of an auctioneer selling a single item to a single buyer. We have the following assumptions:

- The buyer has a valuation z for the item known only to him.
- z is picked from a distribution f. The distribution is known to both the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- Also, the buyer must NOT be asked to pay more than z.
- Recall that the auction design involves designing the allocation function q, and the payment function t.

The setup

Consider the simple case of an auctioneer selling a single item to a single buyer. We have the following assumptions:

- The buyer has a valuation z for the item known only to him.
- z is picked from a distribution f. The distribution is known to both the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- Also, the buyer must NOT be asked to pay more than z.
- Recall that the auction design involves designing the allocation function q, and the payment function t.

Single item Optimal Auctions

- Thus the objective of the seller is now to design an auction that solves the following optimization problem:

Maximize the expected revenue $\left(\max _{q(\cdot), t(\cdot)} \mathbb{E}_{\mathbf{z} \sim f} t(z)\right)$

subject to
 (1) Truthful Extraction of valuation

(2) Buyer is asked to pay at most his valuation

Single item Optimal Auctions

- Thus the objective of the seller is now to design an auction that solves the following optimization problem:

Maximize the expected revenue $\left(\max _{q(\cdot), t(\cdot)} \mathbb{E}_{\mathbf{z \sim f}} t(z)\right)$

subject to

(1) Truthful Extraction of valuation
(2) Buyer is asked to pay at most his valuation

- Myerson [1981] solved this problem. Define the virtual valuation function $\phi(z):=z-\frac{1-F(z)}{f(z)}$. The solution is then given by

$$
(q(z), t(z))= \begin{cases}(0,0) & \text { if } z \leq \phi^{-1}(0) \\ \left(1, \phi^{-1}(0)\right) & \text { if } z>\phi^{-1}(0)\end{cases}
$$

Single item Optimal Auctions

- Thus the objective of the seller is now to design an auction that solves the following optimization problem:

Maximize the expected revenue $\left(\max _{q(\cdot), t(\cdot)} \mathbb{E}_{\mathbf{z} \sim f} t(z)\right)$

subject to
(1) Truthful Extraction of valuation
(2) Buyer is asked to pay at most his valuation

- Myerson [1981] solved this problem. Define the virtual valuation function $\phi(z):=z-\frac{1-F(z)}{f(z)}$. The solution is then given by

$$
(q(z), t(z))= \begin{cases}(0,0) & \text { if } z \leq \phi^{-1}(0) \\ \left(1, \phi^{-1}(0)\right) & \text { if } z>\phi^{-1}(0)\end{cases}
$$

- The item is allocated if buyer's valuation is at least $\phi^{-1}(0)$, and he pays $\phi^{-1}(0)$. He is not allocated the item otherwise.

An Example

- $z \sim \operatorname{unif}[0,1] . F(z)=z, f(z)=1$, and thus $\phi(z)=z-(1-z)=2 z-1$.
- $\phi(z)=0$ when $z=1 / 2$. So, the buyer gets the item for $1 / 2$, if his valuation is at least $1 / 2$. He doesn't get it if his valuation is not even $1 / 2$.
- Observe that the optimal auction is a take-it-or-leave-it offer for a reserve price. The reserve price depends only on the distribution function f.

An Example

- $z \sim \operatorname{unif}[0,1] . F(z)=z, f(z)=1$, and thus $\phi(z)=z-(1-z)=2 z-1$.
- $\phi(z)=0$ when $z=1 / 2$. So, the buyer gets the item for $1 / 2$, if his valuation is at least $1 / 2$. He doesn't get it if his valuation is not even $1 / 2$.
- Observe that the optimal auction is a take-it-or-leave-it offer for a reserve price. The reserve price depends only on the distribution function f

An Example

- $z \sim \operatorname{unif}[0,1] . F(z)=z, f(z)=1$, and thus $\phi(z)=z-(1-z)=2 z-1$.
- $\phi(z)=0$ when $z=1 / 2$. So, the buyer gets the item for $1 / 2$, if his valuation is at least $1 / 2$. He doesn't get it if his valuation is not even $1 / 2$.
- Observe that the optimal auction is a take-it-or-leave-it offer for a reserve price. The reserve price depends only on the distribution function f.

Overview

(1) Introduction

(2) Two-item case
(3) Our work
(4) Summary

Two-item Optimal Auction

- The problem of optimal auction for one-item was solved in 1981. That for two-items is unsolved even today.
- Solutions for certain distributions are known, however. When $z \sim \operatorname{unif}\left[0, b_{1}\right] \times\left[0, b_{2}\right],($ Daskalakis et al. [2013] $)$.

- So the buyer gets only item 1 if $\mathbf{z}_{1}>\mathbf{2} \mathbf{b}_{1} / \mathbf{3}$ (and z_{2} is small), only item 2 if $z_{2}>2 \mathbf{b}_{2} / 3$ (and z_{1} is small), and both items if $z_{1}+z_{2}>\left(2 b_{1}+2 b_{2}-\sqrt{2 b_{1} b_{2}}\right) / 3$.
- Bundling plays a crucial role in two-item optimal auctions.

Two-item Optimal Auction

- The problem of optimal auction for one-item was solved in 1981. That for two-items is unsolved even today.
- Solutions for certain distributions are known, however. When $z \sim \operatorname{unif}\left[0, b_{1}\right] \times\left[0, b_{2}\right]$, (Daskalakis et al. [2013]).

- Bundling plays a crucial role in two-item optimal auctions.

Two-item Optimal Auction

- The problem of optimal auction for one-item was solved in 1981. That for two-items is unsolved even today.
- Solutions for certain distributions are known, however. When $z \sim \operatorname{unif}\left[0, b_{1}\right] \times\left[0, b_{2}\right]$, (Daskalakis et al. [2013]).

- So the buyer gets only item 1 if $\mathbf{z}_{\mathbf{1}}>\mathbf{2} \mathbf{b}_{\mathbf{1}} / \mathbf{3}$ (and z_{2} is small), only item 2 if $\mathbf{z}_{\mathbf{2}}>\mathbf{2} \mathbf{b}_{\mathbf{2}} / \mathbf{3}$ (and z_{1} is small), and both items if $z_{1}+z_{2}>\left(2 b_{1}+2 b_{2}-\sqrt{2 b_{1} b_{2}}\right) / 3$.

Two-item Optimal Auction

- The problem of optimal auction for one-item was solved in 1981. That for two-items is unsolved even today.
- Solutions for certain distributions are known, however. When $z \sim \operatorname{unif}\left[0, b_{1}\right] \times\left[0, b_{2}\right]$, (Daskalakis et al. [2013]).

- So the buyer gets only item 1 if $\mathbf{z}_{\mathbf{1}}>\mathbf{2} \mathbf{b}_{\mathbf{1}} / \mathbf{3}$ (and z_{2} is small), only item 2 if $\mathbf{z}_{\mathbf{2}}>\mathbf{2} \mathbf{b}_{\mathbf{2}} / \mathbf{3}$ (and z_{1} is small), and both items if $z_{1}+z_{2}>\left(2 b_{1}+\mathbf{2} b_{2}-\sqrt{2 b_{1} b_{2}}\right) / \mathbf{3}$.
- Bundling plays a crucial role in two-item optimal auctions.

Overview

(1) Introduction
(2) Two-item case
(3) Our work

4 Summary

Uniform Distribution on arbitrary rectangles

- Consider the buyer's valuations to be uniformly distributed in the intervals $\left[c_{1}, c_{1}+b_{1}\right] \times\left[c_{2}, c_{2}+b_{2}\right]$ for arbitrary nonnegative values of $c_{1}, c_{2}, b_{1}, b_{2}$.

- In our work, we prove the following theorem:

The structure of the optimal solution takes one of the following eight structures for any nonnegative $\left(c_{1}, c_{2}, b_{1}, b_{2}\right)$.

Uniform Distribution on arbitrary rectangles

- Consider the buyer's valuations to be uniformly distributed in the intervals $\left[c_{1}, c_{1}+b_{1}\right] \times\left[c_{2}, c_{2}+b_{2}\right]$ for arbitrary nonnegative values of $c_{1}, c_{2}, b_{1}, b_{2}$.

- In our work, we prove the following theorem:

Theorem

The structure of the optimal solution takes one of the following eight structures for any nonnegative $\left(c_{1}, c_{2}, b_{1}, b_{2}\right)$.

The structure of optimal auctions

When both c_{1} and c_{2} are low

The solution is very close to the case $\left(c_{1}, c_{2}\right)=(0,0)$. The difference is that the buyer gets item 1 with some positive probability, even when z_{1} is low. Similar is the case for item 2.

When c_{1} is low and c_{2} is high, or vice-versa

- Since c_{2} is very high, item 2 is allocated with probability 1 for the least possible price c_{2}, no matter what z_{2} is. Myerson auction is conducted for item 1.
- Similar is the case when c_{2} is low and c_{1} is high.

When both c_{1} and c_{2} are high

For higher values of c_{1} and c_{2}, the optimal auction is a take-it-or-leave-it auction with a reserve price, with both the items bundled as a single item.

Phase diagram

The phase diagram indicates the optimal menu for all the values of c_{1}, c_{2}, when $b_{1}=2$ and $b_{2}=1$.

Overview

(1) Introduction

(2) Two-item case
(3) Our work
(4) Summary

Summary

- The optimal auction for a single item is a simple take-it-or-leave-it auction at a reserve price. The reserve price depends on the distribution f.
- The optimal auction for two-item case is much more complicated. It is NOT the single item optimal auction repeated twice. Bundling increases the revenue.
- In our work, we prove that the optimal auction when the valuations are uniformly distributed in the rectangle $\left[c_{1}, c_{1}+b_{1}\right] \times\left[c_{2}, c_{2}+b_{2}\right]$ is to sell the items according to one of the eight simple menus.
- The auctions resemble the single item optimal auctions when either of c_{1} or c_{2} is high.

Summary

- The optimal auction for a single item is a simple take-it-or-leave-it auction at a reserve price. The reserve price depends on the distribution f.
- The optimal auction for two-item case is much more complicated. It is NOT the single item optimal auction repeated twice. Bundling increases the revenue.
- In our work, we prove that the optimal auction when the valuations are uniformly distributed in the rectangle $\left[c_{1}, c_{1}+b_{1}\right] \times\left[c_{2}, c_{2}+b_{2}\right]$ is to sell the items according to one of the eight simple menus.
- The auctions resemble the single item optimal auctions when either of c_{1} or c_{2} is high.

Summary

- The optimal auction for a single item is a simple take-it-or-leave-it auction at a reserve price. The reserve price depends on the distribution f.
- The optimal auction for two-item case is much more complicated. It is NOT the single item optimal auction repeated twice. Bundling increases the revenue.
- In our work, we prove that the optimal auction when the valuations are uniformly distributed in the rectangle $\left[c_{1}, c_{1}+b_{1}\right] \times\left[c_{2}, c_{2}+b_{2}\right]$ is to sell the items according to one of the eight simple menus.
- The auctions resemble the single item optimal auctions when either of c_{1} or c_{2} is high.

Summary

- The optimal auction for a single item is a simple take-it-or-leave-it auction at a reserve price. The reserve price depends on the distribution f.
- The optimal auction for two-item case is much more complicated. It is NOT the single item optimal auction repeated twice. Bundling increases the revenue.
- In our work, we prove that the optimal auction when the valuations are uniformly distributed in the rectangle $\left[c_{1}, c_{1}+b_{1}\right] \times\left[c_{2}, c_{2}+b_{2}\right]$ is to sell the items according to one of the eight simple menus.
- The auctions resemble the single item optimal auctions when either of c_{1} or c_{2} is high.

